Artificial Neural Network Method for Solving of Bratu’s Problem
DOI:
https://doi.org/10.5564/jimdt.v4i1.2658Keywords:
Differential equations, Nonstandard finite difference method, Boundary value problem, Machine learning algorithmsAbstract
The Bratu’s problem is widely used to model phenomenas such as heat transfer and combustion theory. For certain values of the parameters, there are 2 different solutions, and finding the lower solution is not difficult, and it is quite possible to apply standard mathematical methods for it calculation. However, finding the upper solution is difficult and requires the use of high-order convergent algorithms. In this study, the method of calculating the numerical solution of the Bratu’s problem using artificial neural networks is considered. When constructing the neural network, sinusoids were used as the activation function, and RMSprop (Root Mean Squared Propagation) was used as the optimization method. By doing so, its possible to calculate two solutions of the Bratu’s problem.
Хиймэл Нейроны Сүлжээг Ашиглан Нэг Хэмжээст Брату Бодлогын Шийдийг Тооцоолох нь
Хураангуй: Брату бодлогыг дулаан дамжуулалт, шаталтын процесс гэх мэт үзэгдлүүдийг загварчлахад өргөн ашигладаг. Тэгшитгэл параметрийн тодорхой утгуудад хоёр шийдтэй бөгөөд доод шийдийг олох нь төвөггүй, тооцон бодох математикийн стандарт аргуудыг хэрэглэх бүрэн боломжтой. Харин дээд шийдийг олох нь бэрхшээлтэй бөгөөд өндөр эрэмбийн нийлэлттэй алгоритмуудыг ашиглах шаардлага тулгардаг. Энэхүү судалгаанд Брату бодлогын тоон ший- дийг хиймэл нейроны сүлжээ ашиглан тооцоолох аргыг авч үзлээ. Нейроны сүлжээг байгуулахдаа идэвхжилтийн функцээр синусоидийг, оновчлолын аргаар RMSprop (Root Mean Squared Propagation) аргыг ашиглав. Ингэснээр Брату бодлогын хоёр шийдийг тооцоолох боломжтой болов.
Түлхүүр үгс: Машин сургалт, Дифференциал тэгшитгэл, Захын нөхцөлт бодлого, Стандарт бус төгсгөлөг ялгаврын арга
Downloads
159
References
R. Buckmire, “On Exact and Numerical Solutions of the One-Dimensional Planar Bratu Problem”, Science Direct Working Paper, 2003.
J. P. Boyd, “One-point pseudospectral collocation for the one-dimensional Bratu equation,” Applied Mathematics and Computation, Vol. 217, pp. 5553-5565, 2011, doi: https://doi.org/10.1016/j.amc.2010.12.029.
N. Yadav, A. Yadav, and M. Kumar, “An Introduction to Neural Network Methods for Differential Equations,” Springer Briefs in Computational Intelligence, 2015, doi: https://doi.org/10.1007/978-94-017-9816-7.
A. Ahmad, M. Sulaiman, A. J. Aljohani, A. Alhindi, and H. Alrabaiah, “Design of an efficient algorithm for solution of Bratu differential equations,” Ain Shams Engineering Journal, Vol. 12, pp. 2211-2225, 2021, doi: https://doi.org/10.1016/j.asej.2020.11.007.
M. A. Z. Raja, S. Ahmad, and R. Samar, “Solution of the 2-dimensional Bratu problem using neural network, swarm intelligence and sequential quadratic programming,” Springer Neural Comput and Applic, Vol. 25, pp. 1723-1739, 2014, doi: https://doi.org/10.1007/s00521-014-1664-3.
H. C. Lucas, “Differentiable Boundary Value Problem Solver,” University of Nevada, Reno, Master of Science in Computer Science and Engineering, 2020.
G. Fabiani, F. Calabro, L. Russo, and C. Siettos, “Numerical solution and bifurcation analysis of nonlinear partial differential equations with extreme learning machines,” Journal of Scientific Computing, Vol. 44, pp. 21-25, 2021, doi: https://doi.org/10.17506/26867206_2021_21_2_25.
A. Mohsen, “A simple solution of the Bratu problem,” Elsevier-Computers and Mathematics with Applications, Vol. 67, pp. 26-33, 2014, doi: https://doi.org/10.1016/j.camwa.2013.10.003.
N. Karamollahi, G. B. Loghmani, and M. Heydari, “A computational method to find dual solutions of the one-dimensional Bratu problem,” Journal of Computational and Applied Mathematics, Vol. 388, pp. 113309, 2021, doi: https://doi.org/10.1016/j.cam.2020.113309.
H. Caglar, N. Caglar, M. ¨ Ozer, A. Valarıstos, and A. N. Anagnostopoulos, “B-spline method for solving Bratu’s problem,” International Journal of Computer Mathematics, Vol. 87, pp. 1885–1891, 2010, doi: https://doi.org/10.1080/00207160802545882.
F. Lang, and X. Xu, “Quintic B-spline collocation method for second order mixed boundary value problem,” Computer Physics Communications, Vol. 183, pp. 913-921, 2012, doi: https://doi.org/10.1016/j.cpc.2011.12.017.
I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial Neural Networks for Solving Ordinary and Partial Differential Equations,” Computational Computational Physics, Vol. 1, 1997, doi: https://doi.org/10.1007/978-1-4899-2846-7_1.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors grant the Journal of Institute of Mathemathics and Digital Technology a license to publish the article and identify itself as the original publisher.
Articles in the Journal of Institute of Mathemathics and Digital Technology are Open Access articles published under a Creative Commons Attribution-NonCommercial 4.0 International License - CC BY NC.
This license permits NonComericial use, distribution and reproduction in any medium, provided the original work is properly cited.