The Connection Between Pareto Optimality and Portfolio Growth Rate
DOI:
https://doi.org/10.5564/jimdt.v4i1.2655Keywords:
Markowitz Theory, Multi-Objective EfficiencyAbstract
Portfolio optimization plays an important role in investment sciences. We examine the classical Markowitz model from a viewpoint of Pareto optimality. We consider a multi-objective optimization problem by maximizing the return of a portfolio and minimizing risk. We show that for appropriate weights, the Pareto optimal solution of the multi-objective optimization is a solution to the problem of maximizing a portfolio growth rate. Numerical results were provided using Mathlab.
Багцын Өгөөжийн Өсөлт ба Парето Оновчлол
Хураангуй: Хөрөнгө оруулалтын шинжлэх ухаанд багцын оновчлол чухал үүрэг гүйцэтгэдэг. Бид энэхүү ажилд Марковицын сонгодог загварыг Паретогийн оновчлолтой холбон, багцын өгөөжийг нэмэгдүүлэх, эрсдлийг багасгахын тулд олон зорилтот оновчлолын бодлогыг авч үзлээ. Олон зорилтот оновчлолын Парето шийдүүд нь багцын хамгийн их өсөлтийг тодорхойлох асуудалд хариу өгдөг гэдгийг бид харууллаа. Тоон үр дүнг Матлаб ашиглан гаргасан.
Түлхүүр үгс: Марковицийн онол, Олон-зорилтот оптимизаци
Downloads
171
References
D. G. Luenberger, “Investment Science,” Oxford University Press, Inc, pp. 158-430, 2009.
H. Markowitz, “Portfolio Selection,” The Journal of Finance, Vol. 7, no. 1, Mar., pp. 77-91, 1952, doi: https://doi.org/10.1111/j.1540-6261.1952.tb01525.x.
R. Enkhbat, “Optimization 5,” National University of Mongolia Press, pp. 77-103, 2018.
J. P. Aubin, “Optima and Equilibria,” University Paris-Dauphine, pp. 108-110, 1998.
J. Nocedal, and S. J. Wright, “Numerical Optimization,” Springer-Verlag New York, Inc, 2006.
Yahoo Finance Website:, https://finance.yahoo.com/.
G. Gantigmaa, “Optimal Portfolio Selection of Currencies,” Journal of Institute of Mathematics and Digital Technology-3, Vol. 3, pp. 29-35, 2021.
M. Vaclavik, and J. Jablonsky, “Revisions of Modern Portfolio Theory Optimization Model,” Springer-Verlag, Sep., pp. 474, 2011, doi: https://doi.org/10.1007/s10100-011-0227-2.
Y. Zang, X. Li, and S. Guo, “Portfolio Selection Problems with Markowitz’s mean-variance framework: a review of literature,” Fuzzy Optim Decis Making 17, Springer, pp. 125-158, 2018, doi: https://doi.org/10.1007/s10700-017-9266-z.
O. Mionel, and A. Moraru, “The Trend of International Risk Diversification,” Acta Universitatis Danubius Economica, Vol. 9, no. 5, pp. 235-246.
Ya. Bazarsad, and R. Enkhbat, “Probability Theory and Mathematical Statistics, Institute of Information and Communication Technology,” Mongolian University of Science and Technology, pp. 31-48, 2008.
Ya. Bazarsad, M. Banzragch, V. Batzorig, P. Dorjnaran, U. Delgersaikhan, Ya. Lutbat, N. Munkhdalai, and R. Enkhbat, “Economic Methods and Models, Institute of Information and Communication Technology,” Mongolian University of Science and Technology, pp. 80-85, 2007.
L. Harris, “Trading and Exchange: Market Microstructure for Practitioners,” Oxford University Press, pp. 41.
G. Debreu, “Valuation Equilibrium and Pareto Optimum,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 40, no. 7, Jul., 1954, doi: https://doi.org/10.1073/pnas.40.7.588.
J. Cvitanic, V. Polimenis, and F. Zapatero, “Optimal Portfolio Allocation with Higher Moments,” Annals of Finance, Vol. 4, Mar., 2007, doi: https://doi.org/10.1007/s10436-007-0071-5.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Enkhbat Rentsen, Gantigmaa Ganlkhagva
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors grant the Journal of Institute of Mathemathics and Digital Technology a license to publish the article and identify itself as the original publisher.
Articles in the Journal of Institute of Mathemathics and Digital Technology are Open Access articles published under a Creative Commons Attribution-NonCommercial 4.0 International License - CC BY NC.
This license permits NonComericial use, distribution and reproduction in any medium, provided the original work is properly cited.