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Abstract: In this paper, we used the necessary optimality condition for parameters in a two-point 
iterations for solving nonlinear equations. Optimal values of these parameters fully coincide with 
those obtained in [6] and allow us to increase the convergence order of these iterative methods. 
Numerical experiments and the comparison of existing robust methods are included to confirm the 
theoretical results and high computational efficiency. In particular, we considered a variety of real 
life problems from different disciplines, e.g., Kepler’s equation of motion, Planck’s radiation law 
problem, in order to check the applicability and effectiveness of our proposed methods. 
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INTRODUCTION 

 
Many iterative methods for solving 

nonlinear equations often include non-zero free 
parameters. Their suitable choices allow to 
increase the convergence order of methods. 
There are some choices of parameters based on 
the error analysis, see for example 
[1,2,3,4,5,8,9] and references therein. Recently, 
researchers have also proposed several 
biparametric two-step simple methods with and 
without memory [1,3,4,6]. On the other hand, 
optimization by parameters is one of the 
powerful techniques in science and engineering 
practice. The main goal of this paper is to find 

the optimal choices of parameters 𝜏̅𝜏𝑛𝑛 and, γ in 
the two points iterative methods. We obtained 
analytic formulae for λ and γ without symbolic 
computation technique. 

The paper is organized as follows. In 
section 2, we developed necessary optimality 
condition for parameters in the two-point 
method. In the last section, we present the 
results of numerical experiments that confirm 
the theoretical conclusion about the 
convergence order and made a comparison with 
well-known methods of the same order of 
convergence.  
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In numerical analysis and engineering 
applications, it is often required to solve a non-
linear equation f (x) = 0, where 

RRDxf →⊂:)(  is a scalar function defined 
on an open interval D. Assume that f is 

sufficiently smooth and has a simple zero 𝑥𝑥∗  ∈
𝐷𝐷 and f' is nonsingular in D.  

In this paper, we consider optimization by 
parameters in the two-point iterative methods 
[6,7].  
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where γ, λ are non-zero parameters. It is easy to show that the minimization problem  
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is equivalent to  
 

0.=)( 1+nxf                                                                                                           (3) 
Necessary optimality of condition for parameters in the two-point iterations 
 
The Taylor expansion of f(xn+1) at the point yn gives  
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From (4) it clear that the problem (3) leads to minimization of f(yn). If we choose  𝜏̅𝜏𝑛𝑛 such that  
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 Then we have  
).)((=)( 2

1 nn yfOxf +                                                                                                  (6) 
 We find stationary point of  f (yn(λ, γ)) solving the system  
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 Since f’ (x) ≠ 0 in the domain D containing the zero of the equation (3) the system (7) equivalent to 
the system: 
 

  
0.=  0,=

γλ ∂
∂

∂
∂ nn yy

                                                                                                (8) 
From the first equation in (1) we find that  
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Substituting (9) into (8) we get  
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On the other hand, by definition of functions wn and ϕn we have  
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From (11) and (12) clear that the parameters γ  and λ are determined, so that the system of equations 
(10) holds at least f (yn(λ, γ)) with accuracy O ( f ( xn ) 2 ). That is 
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Thus, we find the extremum point (13) of function )),(( γλnyf  with accuracy ))(( 3
nxfO , because of 

(9), (11), (12).  
The parameters given by the formulae (13) are naturally said to be optimal in the sense of necessary 

optimality condition (8). So, We can find approximations of ., nn λγ  They can be found using the information 
available from the current and previous iteration steps. The methods containig such parameters are called 
methods with memory.  

Note that (13) fully coincides with those obtained in [3] and  
 ),)((=)( 4

nn xfOyf  (14) 
 under (13). Now we shall find iteration parameter nτ  with some accuracy. To this end, we approximate 

)( nyf ′  in (5)  as:  
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As a result, we have  
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From (4) and (15) we conclude that  
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under choices (13), (17).  
 
     Thus, we can formulate the above considered results as: 
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Theorem 1.  Assume that )( nxf  sufficiently smooth in D  containing the localized zero of the equation (3) 

and the initial approximation 0x  is close enough to *x . Then the two point iterative method (1) has p24+ , 
1,2=p  order of convergence under choices (13) and (17).  

   
Remarks. Obviously, the optimal choices (13) also hold true for three-point iterative methods, the first two 
steps of which are the same as (1). Note that the stationary point of view is also applicable for solving system 
of nonlinear equations. 
   

Based on the choices (13), (17) one can construct new p24+  order convergence iterations with 
memory:  
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where nτ  is given by (17). 
 

 
RESULTS AND DISCUSSION 

 
We employed an iterative method (1) with 

(13), (17) and method (19) to solve nonlinear 
equations. We compared the new methods (1) and 
method (19) to X. Wang, T. Zhang [8] method 
(WZ), Dzunic [3] method (Dz), Cordero et al. [1] 
method (Co).  

The numerical results are displayed in Tables 
1-4. The comparison with existing methods is 
included as well. For numerical tests we considered 
the following problems:  

1=1,1)(cos= *323
1 −++−−− xxxef xx  

0,=1),(logsin= *233
2 xxxef xx ++−

       
38.0=1,0,sin= *

3 xEEMf <<+− εε  

4.96=1,
5

= *
4 xxef x −+−

 
 
which has been selected from [5] and [8,9,10]. For 
𝑓𝑓1, 𝑓𝑓2, we consider the initial guesses −0.6 and 1.3, 
respectively. In particular, 3f is Kepler's equation 

which relates the eccentric anomaly E , the mean 
anomaly M  and the eccentricity ε  in an elliptic 
orbit.  

One of the classical laws of planetary motion 
due to Kepler says that a planet revolves around the 
sun in an elliptic orbit. 

Suppose one needs to find the position ),( yx
of the planet at time t . This can be determined by 
the following formula: 

)cos( ε−= Eax  

.sin1 2 Eay ε−=  
 

To determine the position ),( yx , one must 
know how to compute E, which can be computed 
from Kepler’s equation of motion: 

.100,sin <<=+− εε EEM  
 

The solution of the above equation can be 
obtained by implementing various iterative methods 
with different values of M  and  ε . 
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The approximate root of 3f  is 
0.3899777749463621.  

In [10]  we have considered one of the famous 
classical physics problem, which is known as the 
Planck's radiation law problem. Fourth non-linear 
function 4f arises from this problem. Planck’s 
radiation law problem calculates the energy density 
within an isothermal blackboard and is given by the 
following formula: 

𝜑𝜑�λ � =
8𝜋𝜋𝜋𝜋𝜋𝜋λ

−5

𝑒𝑒

𝑐𝑐𝑐𝑐

λ BT
−1

, 

where λ  is the wavelength of the radiation, 𝑇𝑇 is 
the absolute temperature of the blackbody, 𝐵𝐵 is the 
Boltzmann constant, 𝑝𝑝 is the Planck constant and 𝑐𝑐 
is the speed of light.  We are interested in 
determining wavelength λ  which corresponds to 
maximum energy density 𝜑𝜑�λ �. 

Further,  𝜑𝜑′�λ � = 0. implies that the 
maximum value of  𝜑𝜑 occurs when 
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If 𝑥𝑥 = 𝑐𝑐𝑐𝑐

λ BT
, then the equation is satisfied when  
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0)(4 =xf  has two zeros. Obviously, one of the 

roots 𝑥𝑥 =  0 is not taken for discussion. Another 
root  is  𝑥𝑥∗ =  4.965114231744276303699. 
Moreover, the initial guesses are chosen that 0 and 
6 for those problems. 

The results, for methods with memory, are 
computed with the same initial values of γ  and λ . 
The calculations have been performed in the 
MATHEMATICA 12 using multi-precision 
arithmetic with 1000 digits and we used the 
following stopping criterion:   

60* 10|<| −− xxn . 
The number of iterations )(n , the absolute 

errors || *xxn −  and computational order of 
convergence )(ρ  are also shown in Tables 1-2. 
Here, )(ρ  is calculated by the following formula 
[2,9]:  
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where 21,, −− nnn xxx  are three consecutive 
approximations of iterations.  

From Tables 1- 4, we see that the computed 
results completely support the theory of 
convergence discussed in previous sections. The 
convergence order of the method (19) with 2=p  
is eight which is higher than other two-step methods 
with memory. 
 

Table 1. Comparison of methods for example 1 
Methods 

nτ  𝑛𝑛 || *xxn −  ρ  

(1),  (p=1, λ0 = −0.1,  𝛾𝛾0 = −0.01) (17) 3 0.37e-96 6 
1),   (p=2, λ0 = −0.1,   𝛾𝛾0 = −0.01) (17) 3 0.51e-168 8 

(19),  (p=1, λ0 = −0.1,   𝛾𝛾0 = −0.01) (17) 3 0.69e-69 6 
(19),  (p=2, λ0 = −0.1,   𝛾𝛾0 = −0.01) (17) 3 0.71e-126 8 

WZ [8],  ( λ0 = −0.1, λ𝑛𝑛 = −𝐻𝐻′′
𝑛𝑛/2𝑓𝑓′) - 3 0.45e-98 7 

Dz [3],  (p=-0.1,  𝛾𝛾0 = −0.01, 𝑔𝑔 = 1 + 𝜃𝜃𝑛𝑛) - 3 0.24e-168 7 
Co [1],  (λ0 = −0.1,    𝛾𝛾0 = −0.01) - 3 0.11e-167 7 

 
Table 2. Comparison of methods for example 2 

Methods 
nτ  𝑛𝑛 || *xxn −  ρ  

(1),  (p=1, λ0 = −0.1,  𝛾𝛾0 = −0.01) (17) 3 0.26e-94 6 
(1),  (p=2, λ0 = −0.1,  𝛾𝛾0 = −0.01) (17) 3 0.79e-145 8 
(19),  (p=1, λ0 = −0.1, 𝛾𝛾0 = −0.01) (17) 3 0.71e-91 6 
(19),  (p=2, λ0 = −0.1,   𝛾𝛾0 = −0.01) (17) 3 0.88e-161 8 

WZ[8],  ( λ0 = −0.1, λ𝑛𝑛 = −𝐻𝐻′′
𝑛𝑛/2𝑓𝑓′) - 4 0.40e-129 7 

Dz [3],  (p=-0.1,  𝛾𝛾0 = −0.01, 𝑔𝑔 = 1 + 𝜃𝜃𝑛𝑛) - 4 0.42e-360 7 
Co[1],  (λ0 = −0.1,    𝛾𝛾0 = −0.01) - 4 0.67e-245 7 
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Table 3. Comparison of methods for example 3 
Methods 

nτ  𝑛𝑛 || *xxn −  ρ  

(1),  (p=1, λ0 = −0.1,  𝛾𝛾0 = −0.01) (17) 3 0.54e-105 6 
(1),  (p=2, λ0 = −0.1,  𝛾𝛾0 = −0.01) (17) 3 0.61e-153 8 
(19),  (p=1, λ0 = −0.1, 𝛾𝛾0 = −0.01) (17) 3 0.13e-102 6 
(19),  (p=2, λ0 = −0.1,   𝛾𝛾0 = −0.01) (17) 3 0.68e-193 8 

WZ[8],  ( λ0 = −0.1, λ𝑛𝑛 = −𝐻𝐻′′
𝑛𝑛/2𝑓𝑓′) - 4 0.39e-133 7 

Dz [3],  (p=-0.1,  𝛾𝛾0 = −0.01, 𝑔𝑔 = 1 + 𝜃𝜃𝑛𝑛) - 4 0.52e-177 7 
Co[1],  (λ0 = −0.1,    𝛾𝛾0 = −0.01) - 4 0.17e-192 7 

 
Table 4. Comparison of methods for example 4 

Methods 
nτ  𝑛𝑛 || *xxn −  ρ  

(1),  (p=1, λ0 = −0.1,  𝛾𝛾0 = −0.01) (17) 3 0.18e-112 6 
(1),  (p=2, λ0 = −0.1,  𝛾𝛾0 = −0.01) (17) 3 0.12e-172 8 
(19),  (p=1, λ0 = −0.1, 𝛾𝛾0 = −0.01) (17) 3 0.26e-181 6 
(19),  (p=2, λ0 = −0.1,   𝛾𝛾0 = −0.01) (17) 3 0.63e-198 8 

WZ[8],  ( λ0 = −0.1, λ𝑛𝑛 = −𝐻𝐻′′
𝑛𝑛/2𝑓𝑓′) - 4 0.33e-162 7 

Dz [3],  (p=-0.1,  𝛾𝛾0 = −0.01, 𝑔𝑔 = 1 + 𝜃𝜃𝑛𝑛) - 4 0.32e-165 7 
Co[1],  (λ0 = −0.1,    𝛾𝛾0 = −0.01) - 4 0.33e-197 7 

CONCLUSIONS 
 

In this paper, a new two-point derivative-
free iterative method with memory for solving 
nonlinear equations was introduced and 
studied. Using optimal values of parameters, 
the higher order method with memory is 
obtained. Exact analytical formulas for the 
optimal values of the parameters have been 
found for the first time. The convergence order 
increased from four to eight without any 
additional computations. Finally, numerical 
experiments have shown that the new method is 

eight-order and effective. We also solved some 
real world applications of different nature to 
show the effectiveness of the proposed 
methods. 
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