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Abstract: : In this article, we introduce a unified approach to constructing a higher-order 

derivative-free scheme based on the approximations of 𝐹′(𝑧𝑘)−1. A family of order  𝑝 = 6,7 

derivative-free method is proposed and compared to some well-known methods. The necessary 

and sufficient condition for 𝑝-th order of convergence are given in terms of parameter matrices 

�⃐�(𝑘) and 𝛼(𝑘). Some good choices of �⃐�(𝑘) and 𝛼(𝑘) are offered. Numerical experiments were 

carried out to confirm the theoretical results. 
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INTRODUCTION 

The issue of finding solution to 𝐹(𝑥) = 0, 

where 𝐹: 𝐷 ⊂ 𝑅𝑚 → 𝑅𝑚, 𝐷 is open convex 

domain in 𝑅𝑚  is an important and 

interesting task in both numerical analysis 

and applied scientific branch [1]-[21]. The 

most common used method for solving this 

problem is the second order Newton’s 

method: 

                                         𝑥(𝑘+1) = 𝑥(𝑘) − 𝐹′(𝑥(𝑘))
−1

𝐹(𝑥(𝑘)),  𝑘 = 0,1, … ,   (1) 

where 𝑥0 is the initial guess and 𝐹′(𝑥)−1 is 

the inverse of Fréchet derivative 𝐹′(𝑥) of 

the function 𝐹(𝑥) . In many practical 

situations, the derivative 𝐹′(𝑥)  does not 

exist or is tedious to calculate, instead of the 

(1) often used derivative-free methods. For 

example, the quadratically convergent 

Traub-Steffensen method  is given below 

[19], [20]. 

                                 𝑥(𝑘+1) = 𝑥(𝑘) − [𝐹; 𝑤(𝑘), 𝑥(𝑘)]
−1

𝐹(𝑥(𝑘)),  𝑘 = 0,1, … ,          (2) 
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where [𝐹; 𝑤(𝑘), 𝑥(𝑘)]  is the first-order 

divided difference of 𝐹 and 𝑤(𝑘) = 𝑥(𝑘) +

𝛾𝐹(𝑥(𝑘)) , 𝛾  is an arbitrary non-zero 

constant. [𝐹; 𝑤(𝑘), 𝑥(𝑘)]
−1

 is the inverse of 

matrix [𝐹; 𝑤(𝑘), 𝑥(𝑘)] . The divided 

difference of 𝐹  is a mapping  [⋅,⋅: 𝐹]: 𝐷 ×
𝐷 ⊂ 𝑅𝑚 × 𝑅𝑚 → 𝐿(𝑅𝑚) defined by 

 

                             [𝐹; 𝑥 + ℎ1, 𝑥] = ∫ 𝐹
1

0
′(𝑥 + 𝑡ℎ1)𝑑𝑡,  ∀𝑥, ℎ1 ∈ 𝑅𝑚.                        (3) 

Expanding 𝐹′(𝑥 + 𝑡ℎ1) in Taylor series at 

the point 𝑥 and integrating, we have 

                           [𝐹; 𝑥 + ℎ1, 𝑥] = 𝐹′(𝑥) +
1

2
𝐹″(𝑥)ℎ1 +

1

6
𝐹‴(𝑥)ℎ1

2 + 𝑂(ℎ1
3),          (4) 

where ℎ1
𝑖 = (ℎ1, ℎ1, …𝑖 , ℎ1). Over the years, 

many efficient derivative-free high-order 

methods have been proposed for solving 

nonlinear systems, see [1]-[16],[8]-[17] and 

references therein. The aim of this article is 

to develop a unified approach to 

constructing high-order derivative-free 

methods. 

 

METHODS 

Derivative-free iterative methods 

We considered three-step symmetric 

iterations: 

                                    

𝑦(𝑘) = 𝑥(𝑘) − [𝐹; 𝑤(𝑘), 𝑠(𝑘)]
−1

𝐹(𝑥(𝑘)),

𝑧(𝑘) = 𝑦(𝑘) − �⃐�(𝑘)[𝐹; 𝑤(𝑘), 𝑠(𝑘)]
−1

𝐹(𝑦(𝑘)),

𝑥(𝑘+1) = 𝑧(𝑘) − 𝛼(𝑘)[𝐹; 𝑤(𝑘), 𝑠(𝑘)]
−1

𝐹(𝑧(𝑘)),

          (5) 

where 

                                             �⃐�(𝑘) = 𝐼 + 2𝛩𝑘 + 𝑂(ℎ2).                                          (6) 

and 

                        𝛼(𝑘) = 𝐼 + 2𝛩𝑘 + 4𝛩𝑘
2 − 𝐶𝑘 + 𝐷𝑘 + 𝑂(ℎ3),                              (7) 

here 

              𝐶𝑘 =
1

6
𝐹′(𝑥(𝑘))

−1
𝐹‴(𝑥(𝑘)) (3 (𝐹′(𝑥(𝑘))

−1
𝐹(𝑥(𝑘)))

2

− 𝛾2𝐹(𝑥(𝑘))
2

) ,      (8) 

                            𝐷𝑘 = 𝐹′(𝑥(𝑘))
−1

𝐹″(𝑥(𝑘))𝛩𝑘𝐹′(𝑥(𝑘))
−1

𝐹(𝑥(𝑘)).               (9) 

Theorem 1.  Let 𝐹: 𝐷 ⊂ 𝑅𝑚 → 𝑅𝑚  be a 

sufficiently Fréchet differentiable in an 

open convex set 𝐷  containing simple 

solution 𝛼 . Suppose that  𝐹′(𝑥)  is 

continuous and nonsingular in 𝑥 = 𝛼  of 

𝐹(𝑥) = 0 . Let, 𝑥(0)  be an initial 

approximation, which is sufficiently close 

to 𝛼 . Then the convergence order of 

iteration (5) is equal to seven, if parameter 

matrices �⃐�(𝑘)  and 𝛼(𝑘)  satisfy the 

conditions (6) and (7) respectively. 

We assume that 𝛾 = 0 and 

 

                                                           𝐷𝑘 = 2𝛩𝑘
2 + 𝑂(ℎ3)                                                  (10) 
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Then the formula (7) leads to 

𝛼𝑘 = 𝐼 + 2𝛩𝑘 + 3𝑑𝑘 + 6𝛩𝑘
2 + 𝑂(ℎ3), 

𝑑𝑘 = −
1

6
𝐹′(𝑥𝑘)−1𝐹‴(𝑥𝑘)(𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘))2. 

Hence, Theorem 1 is a derivative-free 

version of Theorem 3.1 for 𝑝 = 7 , see 

Table 1 in [22] . According to (4) we have 

                

[𝐹; 𝑦(𝑘), 𝑥(𝑘)] = 𝐹′(𝑥(𝑘)) −
1

2
𝐹″(𝑥(𝑘))[𝐹; 𝑤(𝑘), 𝑠(𝑘)]

−1
𝐹(𝑥(𝑘))

+
𝐹

‴(𝑥(𝑘))

6
([𝐹; 𝑤(𝑘), 𝑠(𝑘)]

−1
𝐹(𝑥(𝑘)))2 + 𝑂(ℎ3).

                  (11) 

It is easy to show that 

[𝐹; 𝑤(𝑘), 𝑠(𝑘)] = 𝐹′(𝑥(𝑘)) (𝐼 +
1

6
𝐹′(𝑥(𝑘))

−1
𝐹‴(𝑥(𝑘))𝛾2𝐹(𝑥(𝑘))

2
) + 𝑂(ℎ3).               (12) 

From (12) we get 

[𝐹; 𝑤(𝑘), 𝑠(𝑘)]
−1

= (𝐼 −
1

6
𝐹′(𝑥(𝑘))

−1
𝐹‴(𝑥(𝑘))𝛾2𝐹(𝑥(𝑘))

2
) 𝐹′(𝑥(𝑘))

−1

+𝑂(ℎ3).
                     (13) 

Substituting (13) into (11) we obtain 

[𝐹; 𝑦(𝑘), 𝑥(𝑘)] = 𝐹′(𝑥(𝑘))(𝐼 − 𝛩𝑘 +
1

6
𝐹′(𝑥(𝑘))

−1
𝐹‴(𝑥(𝑘))

⋅ (𝐹′(𝑥(𝑘))
−1

𝐹(𝑥(𝑘)))

2

) + 𝑂(ℎ3).
                                (14) 

Analogously, we obtain 

[𝐹; 𝑧(𝑘), 𝑥(𝑘)] = 𝐹′(𝑥(𝑘)) −
1

2
𝐹″(𝑥(𝑘))[𝐹; 𝑤(𝑘), 𝑠(𝑘)]

−1
(𝐹(𝑥(𝑘)) + 𝐹(𝑦(𝑘)))

+
𝐹‴(𝑥(𝑘))

6
([𝐹; 𝑤(𝑘), 𝑠(𝑘)]

−1
(𝐹(𝑥(𝑘)) + 𝐹(𝑦(𝑘))))2 + 𝑂(ℎ3),

 

in which we have used (6). It is easy to show that 

                   𝐹′(𝑥(𝑘))
−1

𝐹(𝑦(𝑘)) = 𝛩𝑘𝐹′(𝑥(𝑘))
−1

𝐹(𝑥(𝑘)) + 𝑂(ℎ3).                                       (15) 

Using (15) and (13) in last expression we have 

[𝐹; 𝑧(𝑘), 𝑥(𝑘)] = 𝐹′(𝑥(𝑘))(𝐼 − 𝛩𝑘 −
1

2
𝐹′(𝑥(𝑘))

−1
𝐹″(𝑥(𝑘))𝛩𝑘𝐹′(𝑥(𝑘))

−1

⋅ 𝐹(𝑥(𝑘)) +
1

6
𝐹′(𝑥(𝑘))

−1
𝐹‴(𝑥(𝑘))(𝐹′(𝑥(𝑘))

−1

⋅ 𝐹(𝑥(𝑘)))2) + 𝑂(ℎ3).

                      (16) 

From (14) and (16) we get 
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[𝐹; 𝑧(𝑘), 𝑥(𝑘)] − [𝐹; 𝑦(𝑘), 𝑥(𝑘)] = −

1

2
𝐹″(𝑥(𝑘))𝛩𝑘𝐹′(𝑥(𝑘))

−1
𝐹(𝑥(𝑘))

+𝑂(ℎ3).
                       (17) 

Analogously, we obtain 

              [𝐹; 𝑦(𝑘), 𝑧(𝑘)] = 𝐹′(𝑧(𝑘)) +
1

2
𝐹″(𝑥(𝑘))𝛩𝑘𝐹′(𝑥(𝑘))

−1
𝐹(𝑥(𝑘)) + 𝑂(ℎ3),                  (18) 

in which we have used (6), (15), (13). From (17) and (18) it follows that 

           𝐹′(𝑧(𝑘)) = [𝐹; 𝑦(𝑘), 𝑧(𝑘)] + [𝐹; 𝑥(𝑘), 𝑧(𝑘)] − [𝐹; 𝑦(𝑘), 𝑥(𝑘)] + 𝑂(ℎ3).                       (19) 

The following three-step derivative-free method was considered in [23] 

𝑦(𝑘) = 𝑥(𝑘) − [𝐹; 𝑤(𝑘), 𝑥(𝑘)]
−1

𝐹(𝑥(𝑘)),

𝑧(𝑘) = 𝑦(𝑘) − �⃐�(𝑘)[𝐹; 𝑤(𝑘), 𝑥(𝑘)]
−1

𝐹(𝑦(𝑘)) = 𝜓4(𝑥(𝑘), 𝑦(𝑘), 𝑤(𝑘))

𝑥(𝑘+1) = 𝑧(𝑘) − 𝛼(𝑘)[𝐹; 𝑤(𝑘), 𝑥(𝑘)]
−1

𝐹(𝑧(𝑘)).

 ,                     (20) 

The same formula (19) was obtained for the iteration (20). As a consequence of (19) the 

following holds: 

                           𝛼(𝑘) = ([𝐹; 𝑦(𝑘), 𝑧(𝑘)] + [𝐹; 𝑧(𝑘), 𝑥(𝑘)]

−[𝐹; 𝑦(𝑘), 𝑥(𝑘)])−1[𝐹; 𝑤(𝑘), 𝑠(𝑘)] + 𝑂(ℎ3),
                                           (21) 

                       

𝛼(𝑘) = 𝐹′(𝑧(𝑘))
−1

[𝐹; 𝑤(𝑘), 𝑠(𝑘)]

= [𝐹; 𝑦(𝑘), 𝑧(𝑘)]
−1

([𝐹; 𝑤(𝑘), 𝑠(𝑘)]

−[𝐹; 𝑧(𝑘), 𝑥(𝑘)] + [𝐹; 𝑦(𝑘), 𝑧(𝑘)]) + 𝑂(ℎ3),

                               (22) 

and 

𝛼(𝑘) = [𝐹; 𝑦(𝑘), 𝑧(𝑘)]
−1

([𝐹; 𝑦(𝑘), 𝑧(𝑘)] − [𝐹; 𝑧(𝑘), 𝑥(𝑘)]

+[𝐹; 𝑦(𝑘), 𝑥(𝑘)])[𝐹; 𝑦(𝑘), 𝑧(𝑘)]
−1

[𝐹; 𝑤(𝑘), 𝑠(𝑘)] + 𝑂(ℎ3).
                   (23) 

This means that formulae (63) and (65) in [23] hold true for iterations (5). The only difference 

is that [𝐹; 𝑤(𝑘), 𝑥(𝑘)] in (63) and (65) ([23]) is replaced by [𝐹; 𝑤(𝑘), 𝑠(𝑘)]. Thus, we have the 

following theorem. 

Theorem 2.  Assume that all the assumptions of Theorem 1 are satisfied. Then the iterations 

(5) have seventh-order convergence provided that �⃐�(𝑘) satisfies the condition (6) and 𝛼(𝑘) is 

given by (21) or (22). 

Another way to obtain seventh-order iteration (5) is the direct application of the sufficient 

convergence condition (7) and [𝐹; 𝑦(𝑘), 𝑧(𝑘)] given by 

                    
[𝐹; 𝑦(𝑘), 𝑧(𝑘)] = 𝐹′(𝑦(𝑘))(𝐼 −

1

2
𝐹′(𝑥(𝑘))

−1
𝐹″(𝑥(𝑘))𝛩𝑘

⋅ 𝐹′(𝑥(𝑘))
−1

𝐹(𝑥(𝑘))) + 𝑂(ℎ3),
                                   (24) 

It is easy to show that 

https://doi.org/10.5564/pmas.v64i02.3649
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𝐹′(𝑦(𝑘)) = 𝐹′(𝑥(𝑘)) (𝐼 − 2𝛩𝑘 +
1

2
𝐹′(𝑥(𝑘))

−1
𝐹‴(𝑥(𝑘)))

⋅ (𝐹′(𝑥(𝑘))
−1

𝐹(𝑥(𝑘)))
2

+ 𝑂(ℎ3).

                             (25) 

for which we have used (4), (6), (13). Substituting (25) into (24) and using (13) we get 

𝐴�̃� = [𝐹; 𝑤(𝑘), 𝑠(𝑘)]
−1

[𝐹; 𝑧(𝑘), 𝑦(𝑘)] = 𝐼 − 2𝛩𝑘 + 𝐶𝑘 −
1

2
𝐷𝑘 + 𝑂(ℎ3),                           (26) 

where 𝐶𝑘 and 𝐷𝑘 are determined by (8), (9). From (26) it follows that 

𝐴�̃�
−1

= [𝐹; 𝑧(𝑘), 𝑦(𝑘)]
−1

[𝐹; 𝑤(𝑘), 𝑠(𝑘)] = 𝐼 + 2𝛩𝑘 − 𝐶𝑘

+
1

2
𝐷𝑘 + 4𝛩𝑘

2 + 𝑂(ℎ3).
                                               (27) 

From (7) and (27) it follows that 

𝐴�̃�
−1

= 𝛼(𝑘) −
1

2
𝐷𝑘 + 𝑂(ℎ3). 

Using formula (17) in last expression we have 

𝐴�̃�
−1

= 𝛼(𝑘) + 𝐹′(𝑥(𝑘))
−1

([𝐹; 𝑧(𝑘), 𝑥(𝑘)] − [𝐹; 𝑦(𝑘), 𝑥(𝑘)]) + 𝑂(ℎ3). 

We can replace 𝐹′(𝑥(𝑘))
−1

 by [𝐹; 𝑤(𝑘), 𝑠(𝑘)]
−1

 due to (17) and hence from last expression we 

find 

𝛼(𝑘) = [𝐹; 𝑧(𝑘), 𝑦(𝑘)]
−1

[𝐹; 𝑤(𝑘), 𝑠(𝑘)] − [𝐹; 𝑤(𝑘), 𝑠(𝑘)]
−1

⋅ ([𝐹; 𝑧(𝑘), 𝑥(𝑘)] − [𝐹; 𝑦(𝑘), 𝑥(𝑘)]) + 𝑂(ℎ3).
                             (28) 

In  [23] consider another option 

𝛼(𝑘) = ([𝐹; 𝑦(𝑘), 𝑧(𝑘)] + [𝐹; 𝑧(𝑘), 𝑥(𝑘)] − [𝐹; 𝑦(𝑘), 𝑥(𝑘)])−1[𝐹; 𝑤(𝑘), 𝑥(𝑘)].                    (29) 

Since 𝐴�̃�
2

= 𝐼 − 4𝛩𝑘 + 4𝛩𝑘
2 + 2𝐶𝑘 − 𝐷𝑘 + 𝑂(ℎ3) then 𝐴�̃�

−1
 can be seeking for 

𝐴�̃�
−1

= 𝑝𝐼 + 𝑞𝐴�̃� + 𝑠𝐴�̃�
2

+ 𝑂(ℎ3).                                                                                 (30)   

Substituting 𝐴�̃�
−1

, 𝐴�̃� and 𝐴�̃�
2
 into last equality we have 

𝐼 + 2𝛩𝑘 − 𝐶𝑘 +
1

2
𝐷𝑘 + 4𝛩𝑘

2 + 𝑂(ℎ3) = (𝑝 + 𝑞 + 𝑠)𝐼 − 2(𝑞 + 2𝑠)𝛩𝑘

+4𝑠𝛩𝑘
2 + (𝑞 + 2𝑠)𝐶𝑘

−
1

2
(𝑞 + 2𝑠)𝐷𝑘 + 𝑂(ℎ3).

 

From this we obtain 

𝑞 + 2𝑠 = −1,  𝑠 = 1,  𝑝 + 𝑞 + 𝑠 = 1 ⇒ 𝑝 = 3,  𝑞 = −3,  𝑠 = 1. 

Thus, substituting 𝐴�̃�
−1

= 3𝐼 − 3𝐴�̃� + 𝐴�̃�
2
 into (28) we obtain 

https://doi.org/10.5564/pmas.v64i02.3649
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𝛼(𝑘) = 3𝐼 − 3𝐴�̃� + 𝐴�̃�

2
− [𝐹; 𝑤(𝑘), 𝑠(𝑘)]

−1
([𝐹; 𝑧(𝑘), 𝑥(𝑘)]

−[𝐹; 𝑦(𝑘), 𝑥(𝑘)]) + 𝑂(ℎ3).
                (31)                                                           

We consider another �⃐�(𝑘) 

             

�⃐�(𝑘) = (2 + 𝑎)𝐼 − [𝐹; 𝑤(𝑘), 𝑠(𝑘)]
−1

((2𝑎 + 𝑏)[𝐹; 𝑦(𝑘), 𝑥(𝑘)]

+𝑏[𝐹; 𝑦(𝑘), 𝑤(𝑘)] − 𝑏[𝐹; 𝑤(𝑘), 𝑥(𝑘)]

+(1 − 𝑎 − 𝑏)[𝐹; 𝑦(𝑘) + 𝑐𝐹(𝑦(𝑘)), 𝑦(𝑘)]) + 𝑂(ℎ2),

                                          (32) 

( 𝑎, 𝑏 some constants) satisfies the condition (6). The obtained result can be formulated as 

follows: 

Theorem 3.  Let us assume that all the assumptions of Theorem 1 are satisfied, then iteration 

(5) has a seventh-order of convergence when �⃐�(𝑘) satisfies the condition (32) and 𝛼(𝑘) is given 

by (31). 

To determine 𝛼(𝑘) given by (31) only one inverse matrix is needed, whereas in (28) two inverse 

matrices are required. Similar formula to (31) was obtained by Wang et al.[17] . Assume that 

(10) holds. Then (7) and (26) leads to 

                                     𝛼(𝑘) = 𝐼 + 2𝛩𝑘 + 6𝛩𝑘
2 − 𝐶𝑘 + 𝑂(ℎ3).                                                              (33) 

and 

                                      𝐴�̃� = 𝐼 − 2𝛩𝑘 − 𝛩𝑘
2 + 𝐶𝑘 + 𝑂(ℎ3),                                                                      (34) 

respectively, In this case 𝛼(𝑘) given by (33) can be expressed as 

𝛼(𝑘) = 𝑝1𝐼 + 𝑞1𝐴�̃� + 𝑠1𝐴�̃�
2

+ 𝑂(ℎ3).                                                                                    (35) 

Substituting (34) into (35) we obtain 

𝐼 + 2𝛩𝑘 + 6𝛩𝑘
2 − 𝐶𝑘 = (𝑝1 + 𝑞1 + 𝑠1)𝐼 − 2𝛩𝑘(𝑞1 + 2𝑠1)

+(−𝑞1 + 2𝑠1)𝛩𝑘
2 + (𝑞1 + 2𝑠1)𝐶𝑘 + 𝑂(ℎ3),

 

which holds when 

𝑝1 + 𝑞1 + 𝑠1 = 1, 𝑞1 + 2𝑠1 = −1,  −𝑞1 + 2𝑠1 = 6 ⇒

𝑠1 =
5

4
,  𝑞1 = −

7

2
,  𝑝1 =

13

4
.
 

Thus, we get 

                                              𝛼(𝑘) =
13

4
𝐼 −

7

2
𝐴�̃� +

5

4
𝐴�̃�

2
+ 𝑂(ℎ3).                                                          (36) 

The obtained result can be formulated as follows: 

Theorem 4.  Let us assume that all the assumptions of Theorem 1 are satisfied, then iteration 

(5) has a seventh-order of convergence when �⃐�(𝑘) satisfies the condition (32) and 𝛼(𝑘) is given 

by (36). 

In [23], we consider other choices 
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                  �⃐�(𝑘) = 3𝐼 − 2[𝐹; 𝑤(𝑘), 𝑠(𝑘)]
−1

[𝐹; 𝑦(𝑘), 𝑥(𝑘)].                                                                          (37) 

 

   �⃐�(𝑘) = 2𝐼 − [𝐹; 𝑤(𝑘), 𝑠(𝑘)]
−1

[𝐹; 𝑦(𝑘) + 𝑐𝐹(𝑦(𝑘)), 𝑦(𝑘)],when 𝑎 = 𝑏 = 0,             (38) 

�⃐�(𝑘) = [𝐹; 𝑤(𝑘), 𝑥(𝑘)]
−1

([𝐹; 𝑤(𝑘), 𝑥(𝑘)] − 𝐷(𝑘)) + 𝑂(ℎ2)

= 3𝐼 − [𝐹; 𝑤(𝑘), 𝑥(𝑘)]
−1

([𝐹; 𝑤(𝑘), 𝑦(𝑘)] + [𝐹; 𝑦(𝑘), 𝑥(𝑘)]).
             (39) 

Note that the easy choices of (32) are (37) and (38). Whang et al. in [17] were obtained seventh-

order derivative free iteration 

𝑦(𝑘) = 𝑥(𝑘) − 𝐵−1𝐹(𝑥(𝑘)),

𝑧(𝑘) = 𝑦(𝑘) − (3𝐼 − 2[𝐹; 𝑤(𝑘), 𝑠(𝑘)]
−1

[𝐹; 𝑦(𝑘), 𝑥(𝑘)]) 𝐵−1𝐹(𝑦(𝑘)),

𝑥(𝑘+1) = 𝑧(𝑘) − 𝛼(𝑘)𝐵−1𝐹(𝑧(𝑘)),

                     (40) 

where 𝐵 = [𝐹; 𝑤(𝑘), 𝑠(𝑘)] and 𝛼(𝑘) given by (36). Thus, our iteration (5) with choices �⃐�(𝑘) and 

𝛼(𝑘) given by (32) and (36) respectively includes the iteration (40) as special cases. 

Now we consider another first order divided difference 

𝑄 = [𝐹; 𝑢(𝑘), 𝜐(𝑘)], 𝑢(𝑘) = 𝑧(𝑘) + 𝑏𝐹(𝑧(𝑘)),  𝜐(𝑘) = 𝑧(𝑘) − 𝑏𝐹(𝑧(𝑘)).                                  (41) 

It is easy to show that 

𝑄 = 𝐹′(𝑧(𝑘)) + 𝑂(ℎ3),                                                                                                            (42) 

and 

𝐵−1𝑄 = 𝐵−1𝐹′(𝑧(𝑘)) = 𝐼 − 2𝛩𝑘 + 𝐶𝑘 − 𝐷𝑘 + 𝑂(ℎ3).                                                         (43) 

Similarly, 𝛼(𝑘) can be expressed by linear combination of the form 

𝛼(𝑘) = 𝑝2𝐼 + 𝑞2𝐵−1𝑄 + 𝑟2(𝐵−1𝑄)2 + 𝑠2(𝐵−1𝑄)3 + 𝑂(ℎ3).                                                 (44) 

Substituting (7) and (43) into (44) we obtain 

𝐼 + 2𝛩𝑘 + 4𝛩𝑘
2 − 𝐶𝑘 + 𝐷𝑘 = 𝑝2𝐼 + 𝑞2(𝐼 − 2𝛩𝑘 + 𝐶𝑘 − 𝐷𝑘)

+𝑟2(𝐼 − 4𝛩𝑘 + 4𝛩𝑘
2 + 2(𝐶𝑘 − 𝐷𝑘))

+𝑠2(𝐼 − 6𝛩𝑘 + 12𝛩𝑘
2 + 3(𝐶𝑘 − 𝐷𝑘)) + 𝑂(ℎ3),

 

which holds when 

𝑝2 + 𝑞2 + 𝑟2 + 𝑠2 = 1, 𝑞2 + 2𝑟2 + 3𝑠2 = −1,  𝑟2 + 3𝑠2 = 1 ⇒

𝑞2 = −3 + 3𝑠2,  𝑟2 = 1 − 3𝑠2,  𝑝2 = 3 − 𝑠2.
 

Hence 

𝛼(𝑘) = (3 − 𝑠2)𝐼 − 3(1 − 𝑠2)𝐵−1𝑄 + (1

−3𝑠2)(𝐵−1𝑄)2 + 𝑠2(𝐵−1𝑄)3 + 𝑂(ℎ3).
                                                                  (45) 
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Thus, we obtain the family of seventh-order 

derivative-free iteration (5) with 𝛼(𝑘) given 

by (45). The result can be formulated as: 

Theorem 5.  Let us assume that all the 

assumptions of Theorem 1 are satisfied, 

then iteration (5) has a seventh-order of 

convergence when parameter matrix �⃐�(𝑘) 

satisfies the conditions (6) and 𝛼(𝑘) is given 

by (45). 

Thus, we obtain the family of seventh-order 

derivative-free iterations (5) with 𝛼(𝑘) 

given by (45). In particular, when 𝑠2 = 0 

the formula (45) leads to

 

          𝛼(𝑘) = 3𝐼 − 3𝐵−1𝑄 + (𝐵−1𝑄)2.                       (46)                                                                                           

When 𝑠2 = −
5

4
 the formula (45) leads to 

𝛼(𝑘) =
17

4
𝐼 −

27

4
𝐵−1𝑄 +

19

4
(𝐵−1𝑄)2 −

5

4
(𝐵−1𝑄)3.                (47) 

In this case the third-step of iteration (5) 

coincides with third-step of iteration 

proposed by Narang et al. in [6] . The 

scheme proposed by Narang et al. in [6]  

differs from (5) only by a second step with 

�⃐�(𝑘) = 𝐼. 

Remark 1.  For seventh-order iterations 

(5) one can choose �⃐�(𝑘) by formula (32). 

Similar results to Theorem 4 and Theorem 

5 can be obtained for iteration (20) using 

[𝐹; 𝑤(𝑘), 𝑥(𝑘)]  instead of [𝐹; 𝑤(𝑘), 𝑠(𝑘)] . 

For example, Theorem 5 can be formulated 

for iteration (20) as follows: 

 

Theorem 6.  Let us assume that all the assumptions of Theorem 1 are satisfied, then iteration 

(20) has a seventh-order of convergence when �⃐�(𝑘) satisfies the condition 

                     �⃐�(𝑘) = 𝐼 + 2𝛩𝑘 + 𝐴𝑘 + 𝑂(ℎ2) and 𝛼(𝑘) is given by (46), where   

 

𝐵−1𝑄 = [𝐹; 𝑤(𝑘), 𝑥(𝑘)]
−1

[𝐹; 𝜐(𝑘), 𝑧(𝑘)],  𝜐(𝑘) = 𝑧(𝑘) + 𝑏𝐹(𝑧(𝑘)). = 𝑧(𝑘) + 𝑏𝐹(𝑧(𝑘)). 

 

The proof of Theorem 6 is the same as proof 

of Theorem 4 and hence, it is omitted here. 

Such theorem was proven by Sharma et al 

in [14] by means of symbolic computation. 

The selected two fourth order iterations in 

[14]  are obtained from �⃐�(𝑘) = 𝑎𝐼 +

𝐺(𝑘) ((3 − 2𝑎)𝐼 + (𝑎 − 2)𝐺(𝑘)) +

𝑂(ℎ2) [23] with 𝑎 = 2  and 𝑎 = 0 

respectively. Thus, we obtained many 

iterative methods with convergence order 

six and seven. 

Computational Cost of methods 

We now discuss the computational cost of  

the considered methods. In Table 1, we 

applied NLS1 to denote the number of 

linear system with some coefficient 

matrices [𝐹; 𝑤(𝑘), 𝑥(𝑘)]  and [𝐹; 𝑤(𝑘), 𝑠(𝑘)] 
for methods (20) and (5) respectively and 

by NLS2, we denoted the number of linear 

system with other coefficient matrices. 

NFE is the number of function evaluations, 

𝑀 × 𝑉  is the matrix by vector 

multiplications, 𝐶 is total computation cost 

per iterations. From those tables we see that 

the most effective and cheapest methods of 

order seven are S7, NM7 and (5) for which 

the total cost is 𝑛3/3. 
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Table 1  Values of C for seventh order methods 

 

 

RESULTS 

 

Numerical Results  

 

The purpose of this section is to 

demonstrate the convergence behaviour of 

the proposed schemes (5) and (20). 

Additionally, we compared it with several 

well-known methods of the same order. To 

do this, consider a standard testing problem. 

Example 1.  Consider the system of 20 

nonlinear equations (see [6],[17]]):  

𝑥𝑖 − cos (2𝑥𝑖 − ∑ 𝑥𝑗

20

𝑗=1

) = 0,  1 ≤ 𝑖 ≤ 20. 

The initial value assumed is 𝑥0 =
{−0.9, −0.9 … , −0.9}𝑇 for obtaining the 

solution 𝛼 ≈ {−0.89, −0.89 … , −0.89}𝑇. 

Example 2.  The second nonlinear system 

is given by [13],[17] .  

{
𝑥𝑖

2𝑥𝑖+1 − 1 = 0,  𝑖 = 1, … ,99,

𝑥1𝑥100
2 − 1 = 0.

 

The initial value is 𝑥0 = {1.5,1.5, … ,1.5}𝑇 

for the solution 𝛼 = {1,1, … ,1}𝑇. 

The methods are tested by using the value 

−0.01 for parameter 𝛾. Tables 2, 3 contain 

the following information: the required 

number of iterations (𝑘), the errors in the 

last step ∥ 𝑥(𝑘) − 𝑥(𝑘−1) ∥ , the 

computational order of convergence 𝜌𝑘 and 

the computational time 𝐶𝑃𝑈𝑡𝑖𝑚𝑒  (in 

seconds). The stopping criterion used is ∥

𝑥(𝑘−1) − 𝑥(𝑘) ∥≤ 10−150 . To verify the 

theoretical order, we computed 𝜌𝑘  using 

the formula [4]. 

𝜌𝑘

=
ln(∥ 𝑥(𝑘+1) − 𝑥(𝑘) ∥/∥ 𝑥(𝑘) − 𝑥(𝑘−1) ∥)

ln(∥ 𝑥(𝑘) − 𝑥(𝑘−1) ∥/∥ 𝑥(𝑘−1) − 𝑥(𝑘−2) ∥)
. 

 

The numerical results displayed in Tables 2 

and 3 are consistent with the theoretical 

results obtained in the preceding sections. 

In view of our analysis of the results in 

Tables 2, 3 given below, overall the best 

method is (5). Furthermore, the best choice 

of parameters �⃐�(𝑘)  and 𝛼(𝑘)  are (37) and 

(36). 
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Table 2. Comparison of methods for example 1 

       

Methods 
   

   CPUtime 

(20) (39) (29) 5 0.1687e-783 6.99 59.05 

(20) (39) (46) 5 0.3992e-747 6.99 67.08 

(5) (37) (31) 5 0.4668e-676 7 50.87 

(5) (38) (31) 5 0.9677e-951 6.99 49.75 

(5) (37) (45) 5 0.5270e-707 6.99 79.91 

(5) (38) (45) 5 0.2723e-999  7 79.85 

(5) (37) (21) 5 0.3234e-700 6.99 52.17 

(5) (38) (21) 5 0.1103e-873 7 40.23 

(5) (37) (36) 5 0.1803e-610 6.99 40.24 
(5) (38) (36) 5 0.6270e-719 7 52.02 

Narang et.al [6] - - 5 0.1043e-886 6.99 53.37 
Sharma et al [12] - - 5 0.3098e-797 6.99 78.88 

 

Table 3. Comparison of methods for example 2 

       

Methods 
     

CPUtime 

(20) (39) (29) 5 1.78E-182 6.99 159.73 

(20) (39) (46) 5 0.3122e-751 6.99 177.88 

(5) (37) (31) 5 0.5140e-621 7 160.44 

(5) (38) (31) 4 0.8557e-958 6.99 140.78 

(5) (37) (45) 5 0.6271e-417 6.99 199.97 

(5) (38) (45) 5 0.1793e-560 7 189.12 

(5) (37) (21) 5 0.4132e-702 6.99 164.56 

(5) (38) (21) 5 0.1545e-879 7 160.98 

(5) (37) (36) 5 0.2803e-710 6.99 150.27 

(5) (38) (36) 5 0.1270e-817 7 162.23 

Narang et.al [6] - - 5 0.1043e-886 6.99 163.37 

Sharma et al [12] - - 5 0.3098e-797 6.99 188.11 

CONCLUSIONS 

 

We constructed several families of order 

𝑝 = 6,7  derivative free methods. The 

necessary and sufficient conditions for 𝑝-th 

order of convergence are defined in terms 

of parameter matrices. Based on the 

approximations for 𝐹′(𝑧𝑘)−1  we suggest 

some choices of these matrices. Numerical 

experiments are given to illustrate the 

theoretical results. 
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