Some modifications and extensions of Popovski’s and Laguerre’s families for solving systems of nonlinear equations

Authors

DOI:

https://doi.org/10.5564/mmj.v27i25.4013

Keywords:

Multipoint iterative methods, Order of convergence, Nonlinear systems, Popovski’s and Laguerre’s methods

Abstract

Two modifications of Popovski’s and Laguerre’s families of methods are developed, which free of second derivatives. The improved modifications have fourth-order of convergence. Moreover, we propose the extensions of modifications to solve nonlinear systems. The convergence order of two and three-step iterations equal to four, six and seven respectively. The numerical results confirm the order of convergence. In addition, we investigate the basin of attraction of the methods and its dependence on the convergence behavior. The comparison is made based on the performance on examples of nonlinear problems and the CPU time.

Downloads

Abstract
36
PDF
22

Author Biography

Tugal Zhanlav, Institute of Mathematics and Digital Technology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia.

School of Applied Sciences, Mongolian University of Science and Technology, Ulaanbaatar, Mongolia.

References

1. Argyros, I.K., Kansal, M., Kanwar, V., & Bajaj, S. (2017) ”Higher-order derivative-free families of Chebyshev-Halley type methods with or without memory for solving nonlinear equations”. Applied Mathematics and Computation, 315, 224–245. https://doi.org/10.1016/j.amc.2017.07.051

2. Behl, R. (2020) ”An efficient family of Chebyshev–Halley’s methods for sys tem of nonlinear equations”. Journal of Mathematical Chemistry, 58, 868–885. https://doi.org/10.1016/j.amc.2017.07.051

3. Chun, Changbum, & Neta, B. (2015) ”Basins of attraction for several third order methods to f ind multiple roots of nonlinear equations”. Applied Mathematics and Computation, 268, 129-137. https://doi.org/10.1016/j.amc.2015.06.068

4. Chun, Changbum, & Neta, B. (2013) ”On a family of Laguerre methods to find multi ple roots of nonlinear equations”. Applied Mathematics and Computation 219, 10987–11004. https://doi.org/10.1016/j.amc.2013.05.002

5. Cuyt, A., & Cruyssen, P. (1983) ”Abstract Pad´e-approximants for the solution of a sys tem of nonlinear equations”. Computers & Mathematics with Applications, 9, 617–624. https://doi.org/10.1016/0898-1221(83)90119-0

6. Dehghan, M., & Shirilord, A. (2022) ”Three-step iterative methods for numerical solu tion of systems of nonlinear equations”. Engineering with Computers, 38, 1015–1028. https://doi.org/10.1007/s00366-020-01072-1

7. Narang, M., Bhatia, S., & Kanwar, V. (2013) ”New two parameter Chebyshev–Halley like family of fourth and sixth-order methods for systems of nonlinear equations”. Applied Mathematics and Computation, 275, 394–403. https://doi.org/10.1016/j.amc.2015.11.063

8. Neta, B. (2022) ”Basins of attraction for family of Popovski’s methods and their extension to multiple roots”. Journal of Numerical Analysis and Approximation Theory, 51, 88–102. https://doi.org/10.33993/jnaat511-1248

9. Neta, B. (2008) ”On Popovski’s method for nonlinear equations”. Applied Mathematics and Computation, 201, 710–715. https://doi.org/10.1016/j.amc.2008.01.012

10. Kansal, M., Kanwar, V., & Bhatia, S. (2019) ”New modifications of Hansen–Patrick’s family with optimal fourth and eighth orders of convergence”. Applied Mathematics and Computation, 269, 507–519. https://doi.org/10.1016/j.amc.2015.07.101

11. Kansal, M., Kanwar, V., & Bhatia, S. (2016) ”Efficient derivative-free variants of Hansen-Patrick’s family with memory for solving nonlinear equations”. Numerical Algorithms, 73, 1017-–1036. https://doi.org/10.1007/s11075-016-0127-6

12. Grau-S´anchez, M., & Noguera, M., Guti´ errez, J. M. (2010) ”On some computational orders of con vergence”. Applied Mathematics Letters, 23, 472–478. https://doi.org/10.1016/j.aml.2009.12.006

13. Popovski, D. B. (1979) ”A Family of one-point iteration formulae for finding roots”. International Journal of Computer Mathematics, 8, 85–88. https://doi.org/10.1080/00207168008803193

14. Kou, J., & Li, Y. (2007) ”Modified Chebyshev’s method free from second deriva tive for nonlinear equations”. Applied Mathematics and Computation, 187, 1027-–1032. https://doi.org/10.1016/j.amc.2006.09.021

15. Kou, J., Li, Y., & Wang, X. (2006) ”Modified Halley’s method free from second derivative”. Applied Mathematics and Computation, 183, 704-–708. https://doi.org/10.1016/j.amc.2006.05.097

16. Sharma, J. R., Guha, R. K., & Sharma, R. (2013) ”An efficient fourth-order weighted Newton method for systems of nonlinear equations”. Numerical Algorithms, 62, 307–323. https://doi.org/10.1007/s11075-012-9585-7

17. Singh, H., & Sharma, J.R. (2023) ”Simple yet highly efficient numerical techniques for systems of nonlinear equations”. Computational and Applied Mathematics, 42, 22. https://doi.org/10.1007/s40314-022-02159-9

18. Schmidt, J. W. (1981) ”On the R-Order of Coupled Sequences”. Computing, 26, 333—342. https://doi.org/10.1007/BF02237952

19. Zhanlav, T., & Chuluunbaatar, O. (2022) ”New developments of Newton-type iterations for solving nonlinear problems”. Ulaanbaatar, Moscow.

20. Zhanlav, T. & Otgondorj, Kh. (2021) ”On the optimal choice of parameters in two-point iterative methods for solving nonlinear equations”. Computational Mathematics and Mathematical Physics, 61, 29–42. https://doi.org/10.1134/S0965542520120180

21. Zhanlav, T., Chun, Changbum, Otgondorj, Kh. & Ulziibayar, V. (2020) ”High-order iterations for systems of nonlinear equations”. International Journal of Computer Mathematics, 97, 1704–1724. https://doi.org/10.1080/00207160.2019.1652739

22. Zhanlav, T., & Khongorzul, D.(2013) ”Semilocal convergence with R-order three theorems for Chebyshev method its applications”. A. Chinchuluun et al (eds), Optimization, Simulation and Control, Springer optimization and its applications, 76, 331–345. https://doi.org/10.1007/978-1 4614-5131-021

23. Zhanlav, T., Chuluunbaatar, O., & Ulziibayar, V. (2017) ”The necessary and sufficient conditions for two and three-point iterative method of Newton’s type iterations”. Computational Mathematics and Mathematical Physics, 57, 1093–1102. https://doi.org/10.1134/S0965542517070120

Downloads

Published

2024-12-29

How to Cite

Zhanlav, T., & Otgondorj, K. (2024). Some modifications and extensions of Popovski’s and Laguerre’s families for solving systems of nonlinear equations. Mongolian Mathematical Journal, 27(25), 10–22. https://doi.org/10.5564/mmj.v27i25.4013

Issue

Section

Articles