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Rainbow Options with MS–VAR process

Battulga Gankhuu

Abstract. This paper presents pricing and hedging methods for rainbow options
and lookback options under Markov-Switching Vector Autoregressive (MS–VAR) process.
Here we assumed that a regime–switching process is generated by a homogeneous Markov
process. An advantage of our model is it depends on economic variables and simple as
compared with previous existing papers.

1. Introduction

The first option pricing formula dates back to classic papers of [6] and [21]. They
implicitly introduced a risk-neutral valuation method to arbitrage pricing. But it was
not fully developed and appreciated until the works of [17] and [18]. The basic idea of
the risk-neutral valuation method is that discounted price process of an underlying asset
is a martingale under some risk-neutral probability measure. The option price is equal
to an expected value, with respect to the risk-neutral probability measure, of discounted
option payoff. In this paper, to price rainbow options and lookback options, we use the
risk-neutral valuation method in the presence of economic variables.

Sudden and dramatic changes in the financial market and economy are caused by
events such as wars, market panics, or significant changes in government policies. To
model those events, some authors used regime–switching models. The regime–switching
model was introduced by seminal works of [14, 15] (see also books of [16] and [20]) and
the model is hidden Markov model with dependencies, see [29]. Markov regime–switching
models have been introduced before Hamilton (1989), see, for example, [13], [23], and
[28]. The regime–switching model assumes that a discrete unobservable Markov process
generates switches among a finite set of regimes randomly and that each regime is defined
by a particular parameter set. The model is good fit for some financial data and has
become popular in financial modeling including equity options, bond prices, and others.

Economic variables play important role in any economic model. In some existing option
pricing models, the underlying asset price is governed by some stochastic process and
it has not taken into account economic variables such as GDP, inflation, unemployment
rate, and so on. For example, the classical Black-Scholes option pricing model uses a
geometric Brownian motion to capture underlying asset prices. However, the underlying
asset price modeled by geometric Brownian motion is not a realistic assumption when
it comes to option pricing. In reality, for the Black-Scholes model, the price process of
the asset should depend on some economic variables.
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Classic Vector Autoregressive (VAR) process was proposed by [25] who criticize large–
scale macroeconometric models, which are designed to model inter–dependencies of
economic variables. Besides [25], there are some other important works on multiple time
series modeling, see, e.g., [27], where a class of vector autoregressive moving average
models was studied. For the VAR process, a variable in the process is modeled by its
past values and past values of other variables in the process. After the work of [25],
VARs have been used for macroeconomic forecasting and policy analysis. However, if
the number of variables in the system increases or the time lag is chosen high, then too
many parameters need to be estimated. This will reduce the degrees of freedom of the
model and entails a risk of over-parametrization.

Therefore, to reduce the number of parameters in a high-dimensional VAR process,
[8] introduced probability distributions for coefficients that are centered at the desired
restrictions but that have a small and nonzero variance. Those probability distributions
are known as Minnesota prior in Bayesian VAR (BVAR) literature which is widely used
in practice. Due to over–parametrization, the generally accepted result is that forecast of
the BVAR model is better than the VAR model estimated by the frequentist technique.
Research works have shown that BVAR is an appropriate tool for modeling large data
sets, for example, see [2].

In this paper, to partially fill the gaps mentioned above, we introduced a Markov–
Switching VAR (MS–VAR) model to value and hedge the options. Our model offers the
following advantages: (i) it tries to mitigate valuation complexity of previous rainbow
option models with regime–switching (ii) it considers economic variables thus the model
will be more consistent with future economic uncertainty (iii) it introduces regime–
switching so that the model takes into account sudden and dramatic changes in the
economy and financial market (iv) it adopts a Bayesian procedure to deal with over–
parametrization. Novelty of the paper is that we introduced MS–VAR process which is
widely used to model economic variables to rainbow options and lookback options.

The rest of the paper is structured as follows. In Section 2, we will consider some
results, which include a Theorem used to price and hedge the rainbow options and
lookback options and a log–normal system of economic and financial variables in [4].
The author obtained pricing formulas for some frequently used options under MS–VAR
process. Section 3 is devoted to pricing the rainbow options and lookback options. Section
4 provides hedging formulas which are based on the locally risk–minimizing strategy for
the options. Finally, Section 5 concludes the study.

2. Review

In this section, we will consider some results in [4]. Let (Ω,HT ,P) be a complete
probability space, where P is a given physical or realworld probability measure and
HT will be defined below. To introduce a regime–switching process, we assume that
{st}Tt=1 is a homogeneous Markov chain with N state and P := {pij}Ni,j=1 is a random
transition probability matrix. We consider a Markov–Switching Vector Autoregressive
(MS–VAR(p)) process of p order, which is given by the following equation

yt = A0(st)ψt +A1(st)yt−1 + · · ·+Ap(st)yt−p + ξt, t = 1, . . . , T, (2.1)

where yt = (y1,t, . . . , yn,t)
T is an (n× 1) random vector, ψt = (1, ψ2,t, . . . , ψk,t)

T is a
(k × 1) random vector of exogenous variables, ξt = (ξ1,t, . . . , ξn,t)

T is an (n× 1) Gaussian
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white noise process with zero mean vector and positive definite random covariance
matrix Σ(st), A0(st) is an (n× k) is an random coefficient matrix at regime st that
corresponds to the vector of exogenous variables, for i = 1, . . . , p, Ai(st) are random
(n× n) coefficient matrices at regime st that correspond to the vectors yt−1, . . . , yt−p. In
this paper, we focused homogeneous MS–VAR process and for heteroscedastic MS–VAR
process, we refer to [4]. Equation (2.1) can be compactly written by

yt = Π(st)Yt−1 + ξt, t = 1, . . . , T, (2.2)

where Π(st) := [A0(st) : A1(st) : · · · : Ap(st)] is random a coefficient matrix at regime st
which consist of all the coefficient matrices and Yt−1 := (ψt, y

T
t−1, . . . , y

T
t−p)

T is a vector
which consist of exogenous variables ψt and last p lagged values of the process yt. In the
paper, this form of the MS–VAR process yt will play a major role than the form which
is given by equation (2.1).
Let us introduce stacked vectors and matrices: y := (y′1, . . . , y

′
T )

′, s := (s1, . . . , sT )
′,

Π := [Π(s1) : · · · : Π(sT )], and Γ := [Σ(s1) · · · : Σ(sT )]. We also assume that the white
noise process {ξt}Tt=1 is independent of the random coefficient matrices Π and Γ,
random transition matrix P and regime–switching process {st}Tt=1 conditional on initial
information F0 := σ(Y0, ψ1, . . . , ψT ). Here for a generic random vector X, σ(X) denotes
a σ–field generated by X random vector, ψ1, . . . , ψT are values of exogenous variables
and they are known at time zero, and for the MS–VAR(p) process, Y0 := (y′1−p, . . . , y

′
0)

′

is an initial value vector of the process yt and for the Bayesian MS–VAR(p) process,
Y0 := (y′1−p−T∗

, . . . , y′0, ψ
′
1−T∗

, . . . , ψ′
0)

′ is the data, covering the period T∗ before time 1
for the posterior distribution. We further suppose that the transition probability matrix
P is independent of the random coefficient matrices Π and Γ given initial information
F0 and regime–switching process s.
To ease of notations, for a generic matrix O = [O1 : · · · : OT ], we denote its first t

and last T − t block matrices by Ōt and Ōc
t , respectively, that is, Ōt := [O1 : · · · : Ot]

and Ōc
t := [Ot+1 : · · · : OT ]. This notation also holds for vectors. We define σ–fields:

for t = 0, . . . , T , Ft := F0 ∨ σ(ȳt), Gt := Ft ∨ σ(Π) ∨ σ(Γ) ∨ σ(P) ∨ σ(s̄t) andHt := Ft ∨
σ(Π) ∨ σ(Γ) ∨ σ(P) ∨ σ(s) and for t = 1, . . . , T , It−1 = Ft−1 ∨ σ(Π̄t) ∨ σ(Γ̄t) ∨ σ(P) ∨
σ(s̄t), where for generic sigma fieldsO1, . . . ,Ok, ∨k

i=1Oi is the minimal σ–field containing
the σ–fields Oi, i = 1, . . . , k. Observe that Ft ⊂ Gt ⊂ Ht and It−1 ⊂ Gt for t = 1, . . . , T .
The σ-fields play major roles in the paper. For the first–order Markov chain, a conditional
probability that the regime at time t+ 1, st+1 equals some particular value conditional
on the past regimes, st, st−1, . . . , s1 depends only through the most recent regime at
time t, st, that is,

pstst+1
:= P(st+1 = st+1|st = st,P,F0) = P

(
st+1 = st+1|s̄t = s̄t,P,F0

)
(2.3)

for t = 0, . . . , T − 1, where ps1 := ps0s1 = P(s1 = s1|P) is an initial probability.

2.1. Risk Neutral Measure

We assume that for t = 1, . . . , T , It−1 measurable random vector θt−1(st) ∈ Rn

(Girsanov kernel, see [5]) has the following representation

θt−1(st) = ∆0(st)ψt +∆1(st)yt−1 + · · ·+∆p(st)yt−p, t = 1, . . . , T, (2.4)

where ∆0(st) is an (n× k) random coefficient matrix and ∆i(st), i = 1, . . . , p are (n× n)
random coefficient matrices, which are measurable with respect to the σ–field It−1. In
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order to change from the real probability measure P to some risk–neutral probability
measure P̃, for the random vectors θt−1(st), we define the following state price density
process:

Lt | F0 :=

t∏
m=1

exp

{
θTm−1(sm)Σ−1(sm)

(
ym −Π(sm)Ym−1

)
− 1

2
θTm−1(sm)Σ−1(sm)θm−1(sm)

}
for t = 1, . . . , T . Then it can be shown that {Lt}Tt=1 is a martingale with respect to the
filtration {Ht}Tt=1 and the real probability measure P. So E[LT |H0] = E[L1|H0] = 1.

In order to formulate the following Theorem which is a trigger of option pricing with
MS–VAR process and will be used in the rest of the paper, we define following matrices
and vector:

Ψ(s) :=


In 0 . . . 0 0

−A1(s2)−∆1(s2) In . . . 0 0
...

... . . .
...

...
0 0 . . . In 0
0 0 . . . −A1(sT )−∆1(sT ) In


Σ̄(s) := diag{Σ(s1), . . . ,Σ(sT )}, α(s) := (α(s1), . . . , α(sT )

T )T , and

δ(s) :=



(
A0(s1) + ∆0(s1)

)
ψ1 +

(
A1(s1) + ∆1(s1)

)
y0 + · · ·+

(
Ap(s1) + ∆p(s1)

)
y1−p(

A0(s2) + ∆0(s2)
)
ψ2 +

(
A2(s2) + ∆2(s2)

)
y0 + · · ·+

(
Ap(s2) + ∆p(s2)

)
y2−p

...(
A0(sT−1 +∆0(sT−1)

)
ψT−1(

A0(sT ) + ∆0(sT )
)
ψT

 .
Then, the following Theorem holds.

Theorem 1. Let a MS–VAR process yt is given by equation (2.1) or (2.2), for
t = 1, . . . , T , representation of a random vector θt−1(st) which is measurable with respect
to σ–field It−1 is given by equation (2.4). We define the following new (risk–neutral)
probability measure

P̃[A|F0] :=

ˆ
A

LT (ω|F0)dP[ω|F0] for all A ∈ HT .

Let

δ(s) =

[
δ̄1(s̄t)
δ̄2(s̄

c
t)

]
, Ψ(s) =

[
Ψ11(s̄t) 0
Ψ21(s̄

c
t) Ψ22(s̄

c
t)

]
and Σ̄(s) =

[
Σ̄11(s̄t) 0

0 Σ̄22(s̄
c
t)

]
be partitions corresponding to random sub vectors ȳt and ȳct of a random vector y =
(yT1 , . . . , y

T
T )

T . Then the following probability laws hold:

y | H0 ∼ N
(
Ψ(s)−1δ(s),Ψ(s)−1Σ̄(s)(Ψ(s)−1)T

)
, (2.5)

ȳct | Ht ∼ N
(
Ψ−1

22 (s̄
c
t)
(
δ̄2(s̄

c
t)−Ψ21(s̄

c
t)ȳt

)
,Ψ−1

22 (s̄
c
t)Σ̄22(s̄

c
t)(Ψ

−1
22 (s̄

c
t))

T
)
, (2.6)

under the risk–neutral probability measure P̃.
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2.2. Log–normal System

Under MS–VAR framework, [4] introduced foreign–domestic market and obtained
pricing formulas for frequently used options. Because the idea of domestic market can
be used to domestic–foreign market, to simplify the calculation, here we will focus on a
domestic market. We assume that financial variables, which are composed of a domestic
log spot rate and domestic assets, and economic variables are together placed on MS–
VAR process yt. To extract the financial variables from the process yt, we introduce the
following vectors and matrices: ei := (0, . . . , 0, 1, 0, . . . , 0)T ∈ Rn is a unit vector, that is,
its i-th component is 1 and others are zero, M1 :=

[
Inz : 0nz×nx

]
, and M2 :=

[
0nx×nz :

Inx

]
.

Let rt be a domestic spot interest rate. We define r̃t := ln(1 + rt). Then r̃t represents
total log return at time t and we will refer to it as log spot rate. Since the spot interest
rate at time t is known at time (t− 1), we can assume that the log spot rate is placed
on the 1st component of the process yt−1. In this case, r̃t = eT1 yt−1. Let nz ≥ 1 and
zt :=M1yt be an (nz × 1) vector at time t that include the domestic log spot rate. Since
the first component of the process zt corresponds to the domestic log spot rate, we
assume that other components of the process zt correspond to economic variables that
affect the financial variables. So, the log spot rate is not constant and is explained by
its own and other variables’ lagged values in the VAR system yt.
We further suppose that x̃t := ln(xt) =M2yt is an (nx × 1) log price process of the

domestic assets, where xt is an (nx × 1) price process of the domestic assets. This means
log prices of the domestic assets are placed on (nz + 1)–th to (nz + nx)–th components
of the MS–VAR process yt. As a result, the domestic market is given by the following
system: 

zt = Π1(st)Yt−1 + ζt

x̃t = Π2(st)Yt−1 + ηt

Dt = exp{−r̃1 − r̃2 − · · · − r̃t} = 1∏t
m=1(1+rm)

r̃t = eT1 yt−1

, t = 1, . . . , T, (2.7)

whereDt is a domestic discount process, ζt :=M1ξt and ηt :=M2ξt are residual processes
of the processes zt and x̃t, respectively, Π1(st) :=M1Π(st) and Π2(st) :=M2Π(st) are
random coefficient matrices. For the system, Dtxt represent a discounted price process of
the domestic assets. If we define a random vector θ̂2,t−1(st) :=M2(yt−1 −Π(st)Yt−1) +
inx

eT1 yt−1, then it can be shown that

Dtxt =
(
Dt−1xt−1

)
⊙ exp

(
ηt − θ̂2,t−1(st)

)
, (2.8)

where ⊙ means the Hadamard product. The random vector θ̂2,t−1(st) which is
measurable with respect to σ-field It−1 can be represented by

θ̂2,t−1(st) = ∆̂0(st)ψt + ∆̂1(st)yt−1 + · · ·+ ∆̂p(st)yt−p, (2.9)

where ∆̂0(st) := −M2A0(st), ∆̂1(st) :=M2

(
In −A1(st)

)
+ inx

eT1 and for m = 2, . . . , T ,

∆̂m(st) := −M2Am(st). According to equation (2.8), as Dt−1xt−1 is Ht−1 measurable,
in order to the discounted process Dtxt is a martingale with respect to the filtration Ht

and some risk-neutral probability measure P̃, we must require that

Ẽ
[
exp

{
ηt − θ̂2,t−1(st)

}
|Ht−1

]
= inx

, (2.10)

where Ẽ denotes a expectation under the risk-neutral probability measure P̃.
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It should be noted that condition (2.10) corresponds only to the white noise process
ηt. Thus, we need to impose a condition on the processes ζt under the risk–neutral
probability measure. This condition is fulfilled by Ẽ[exp{ζt}|Ht−1] = θ̂1,t for Gt−1

measurable any random variable θ̂1,t. Because for any admissible choices of θ1,t, condition
(2.10) holds, the market is incomplete. But prices of the options, which will be defined
below are still consistent with the absence of arbitrage. For this reason, to price the
options, we will use optimal Girsanov kernel process θt, which minimizes the variance
of the state price density process and the relative entropy. According to [4], the optimal
Girsanov kernel process is given by

θt = Θt(θ̂2,t − α2,t), t = 1, . . . , T,

where Θt :=
[
(Σ12(st)Σ

−1
22 (st))

T : Inx

]T
and α2,t :=

1
2D

[
Σ22(st)

]
. Here Σ12(st) :=

M1Σ(st)M
T
2 and Σ22(st) :=M2Σ(st)M

T
2 and D[O] is a vector, whose elements consist

of diagonal elements of a generic square matrix O.
We denote first column of a generic matrix O by (O)1 and a matrix, which consists of

other columns of the matrix O by (O)c1. Then, the representation of the Girsanov kernel
process is

θt = ∆0,tψt +∆1,tyt−1 + · · ·+∆p,tyt−p, t = 1, . . . , T,

where (∆0,t)1 = Θt

(
(∆̂0,t)1 − α2,t

)
, (∆0,t)

c
1 = Θt(∆̂0,t)

c
1, and for m = 1, . . . , p, ∆m,t :=

Θt∆̂m,t. As a result, due to Theorem 1, conditional on Ht, a distribution of the random
vector ȳct is given by

ȳct = (yTt+1, . . . , y
T
T )

T | Ht ∼ N
(
µα
2.1(ȳt, s̄

c
t),Σ22.1

)
under a risk–neutral probability measure P̃, where µα

2.1(ȳt, s̄
c
t) := Ψ−1

22 (s̄
c
t)
(
δ̄2(s̄

c
t)−

Ψ21(s̄
c
t)ȳt

)
and Σ22.1(s̄

c
t) := Ψ−1

22 (s̄
c
t)Σ̄22(s̄

c
t)(Ψ

−1
22 (s̄

c
t))

T are mean vector and covariance
matrix of the random vector ȳct given Ht, respectively.
Let x̃ := (x̃T1 , . . . , x̃

T
T )

T be a log of a price vector x := (xT1 , . . . , x
T
T ). Then in terms

of y, the log of price process is represented by x̃ = (IT ⊗M2)y. Now we introduce a
vector that deals with the domestic risk-free spot interest rate: a vector γu,v is defined
by for v > u, γTu,v :=

[
01×[(u−t)n] : i

T
v−u−1 ⊗ eT1 : 01×[(T−v+1)n]

]
and for v = u, γu,v :=

0 ∈ R[T−t]n. Then observe that for t ≤ u ≤ v,

v∑
m=u+1

r̃m = eTi yu1{u<v} + γTu,v ȳ
c
t .

According to [12], clever change of probability measure lead to significant reduction in
computational burden of derivative pricing. Therefore, we will consider some probability
measures, originated from the risk-neutral probability measure P̃. In this and following
sections, we will assume that 0 ≤ t ≤ u ≤ T . We define the following map defined on
σ-field HT :

P̃i
t,u

[
A|Ht

]
:=

1

Dtxi,t

ˆ
A

Duxi,udP̃
[
ω|Ht

]
, for all A ∈ HT .

Because the discounted process Dtxt get positive values and for 0 ≤ t ≤ u ≤ T ,
Ẽ[Duxu|Ht] = Dtxt (as it is a martingale with respect to the filtration {Ht}Tt=1 and
risk-neutral probability measure P̃), the map become probability measure. If we define
βi
t,u = (iTu−t, 01×(T−u))

T ⊗ enz+i, where⊗ is the Kronecker product, then it can be shown
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that a conditional distribution of the random vector ȳct is given by

ȳct = (yTt+1, . . . , y
T
T )

T | Ht ∼ N
(
µi
t,u(ȳt, s̄

c
t),Σ22.1(s̄

c
t)
)
,

under measure P̃i
t,u, where µ

i
t,u(ȳt, s̄

c
t) := µα

2.1(ȳt, s̄
c
t) + Ψ−1

22 Σ̄2(s̄
c
t)β

i
t,u and Σ22.1(s̄

c
t) are

mean vector and covariance matrix of the random vector ȳct given Ht.
To price rainbow options and lookback options which will be appear the following

sections we will use the following two Lemmas which are given in [4] and are direct
extension of the results in [3].

Lemma 1. For t = 0, . . . , T − 1, the following relation holds

f(s̄ct |Gt) := P̃
(
s̄ct = s̄ct |Gt

)
=

f(Π,Γ|s̄ct , s̄t,F0)

T∏
m=t+1

psm−1sm

∑
s̄ct

f(Π,Γ|s̄ct , s̄t,F0)

T∏
m=t+1

psm−1sm

, (2.11)

where ps0s1 := P(s1 = s1|P,F0) and psm−1sm := P(sm = sm|P, sm−1 = sm−1,F0) for
m = t+ 1, . . . , T .

If we denote normal distribution function with mean µ and covariance matrix Ω at
event A by N (A,µ,Ω), then it follows from Lemma 1 that for all A ∈ HT

P̃i
t,u[A|Gt] =

∑
s̄ct

N
(
A,µi

t,u(ȳt, s̄
c
t),Σ22.1(s̄

c
t)
)
f(s̄ct |Gt).

Let us denote conditional on a generic σ-field F joint density function of a generic
random vector X by f̃(X|F) under P̃ and let Jt := σ(Π̄t) ∨ σ(Γ̄t) ∨ σ(s̄t) ∨ F0. Then
the following Lemma is true.

Lemma 2. Conditional on Ft, joint density of Π̄t, Γ̄t, P, and s̄t is given by

f̃
(
Π,Γ,P, s̄t|Ft

)
=

f̃(ȳt|Jt)

(∑
s̄ct

f(Π,Γ|s̄t, s̄ct ,F0)

T∏
m=t+1

psm−1sm

) t∏
m=1

psm−1smf(P|F0)

∑
s̄T

ˆ
Π,Γ,P

f̃(ȳt|Jt)f(Π,Γ|s̄T ,F0)

T∏
m=1

psm−1smf(P|F0)dΠdΓdP

,

(2.12)
for t = 1, . . . , T with convention ps1 = ps0s1 , where for t = 1, . . . , T ,

f̃(ȳt|Jt) = c exp
{
− 1

2

(
ȳt − µ∗

1(s̄t)
)T

(Σ∗
11)

−1(s̄t)
(
ȳt − µ∗

1(s̄t)
)}

with c := 1
(2π)nt/2

∏t
m=1 |Σm(sm)|1/2 , µ∗

1(s̄t) := Ψ−1
11 (s̄t)δ̄1(s̄t) is a mean vector, and

Σ∗
11(s̄t) := Ψ−1

11 (s̄t)Σ̄11(s̄t)(Ψ
−1
11 (s̄t))

T is a covariance matrix.

Now we present a Lemma, which is used to calculate expectation of a random variable
Dv/Du1A with respect to a generic probability measures.
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Lemma 3. Let ȳct | Ht ∼ N
(
µG(ȳt, s̄

c
t),Σ22.1(s̄

c
t)
)
under a generic probability mea-

sure P̃G. Then, for A ∈ HT and t ∨ u ≤ v, it holds

ẼG

[
Dv

Du
1A

∣∣∣∣Ht

]
=
Dt∨u

Du
exp

{[
aG

]v
t∨u

(ȳt, s̄
c
t)
}
N
(
A,

[
µG

]v
t∨u

(ȳt, s̄
c
t),Σ22.1(s̄

c
t)
)

where for t ≤ u ≤ v,[
aG

]v
u
(ȳt, s̄

c
t) = −eT1 yt1{u=t,v>u} − γTu,vµ

G(ȳt, s̄
c
t) +

1

2
γTu,vΣ22.1(s̄

c
t)γu,v

and
[
µG

]v
u
(ȳt, s̄

c
t) = µG(ȳt, s̄

c
t)− Σ22.1(s̄

c
t)R̄

cT
t ju,v.

3. Rainbow Options

Rainbow options are usually calls or puts on the maximum or minimum of underlying
assets. A number of assets is called a number of colors of a rainbow and each asset
is referred to as a color of the rainbow. [26] introduced rainbow options with two
assets. Its extension is given by [19] for rainbow options with more than two assets
using multidimensional normal cumulative distribution functions. In this section, we will
present pricing formulas of call and put options and lookback options on maximum and
minimum of several asset prices which are without default risk. Here we impose weights
on all underlying assets at all time period. Therefore, the options depart from existing
rainbow and lookback options. To price the rainbow options and lookback options, we
reconsider domestic market, which is given by equation (2.7). We define maximum and
minimum of prices of the domestic assets:

M t := max
1≤u≤t

{Mu} and mt := min
1≤u≤t

{mu}

for t = 1, . . . , T , where

Mu := max
1≤i≤nx

{wi,uxi,u} and mu := min
1≤i≤nx

{wi,uxi,u} (3.1)

with wi,u is weight at time u of i-th asset. One of choices of the weight vector correspond
to reciprocal of the assets at time 0. In this case, wi,txi,t = xi,t/xi,0 represents total
return at time t of i-th domestic asset. To price the rainbow options and lookback
options, it will be sufficient to consider the following call option on maximum

CMT
t,w (K) :=

1

Dt
Ẽ
[
DT

(
MT −K

)+∣∣∣It],
where T is a time of the option expiration and K is a strike price of the option. Let us

denote a discounted contingent claim of the option by H
1

T , that is,

H
1

T := DT

(
MT −K

)+
.

To simplify notations, we define the following random variables: Zi,u := wi,uxi,u is a
price at time u of wi,u unit of i-th asset. Then, for all i = 1, . . . , nx and u = 1, . . . , T ,
event {MT = Zi,u} ∩ {MT ≥ K} (which means Zi,u is maximum and the option on
maximum expires in the money) holds if and only if event Ai,u ∩Bi,u holds, where
Bi,u :=

{
Zi,u ≥ K

}
and Ai,u := Ai,u,1 ∩Ai,u,2 with

Ai,u,1 :=
{
Zi,u ≥ Z1,1, . . . , Zi,u ≥ Znx,1, . . . , Zi,u ≥ Z1,t, . . . , Zi,u ≥ Znx,t

}
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and

Ai,u,2 :=
{
Zi,u ≥ Z1,t+1, . . . , Zi,u ≥ Znx,t+1, . . . , Zi,u ≥ Z1,T , . . . , Zi,u ≥ Znx,T

}
.

It is clear that the discounted contingent claim of the call option on maximum can be
represented by

H
1

T =

nx∑
i=1

T∑
u=1

DT

(
Zi,u −K

)
1Ei,u

. (3.2)

where Ei,u := Ai,u ∩Bi,u. Since for 1 ≤ u ≤ t, random variables Zi,u are known at time
t, the sets Ai,u,1 and Bi,u must be represented by Ai,u,1 = Bi,u = {Ø,Ω}. Therefore, it
allows us to deduce that

Ei,u = Ai,u ∩Bi,u

{
∈
{
Ø, Ai,u,2

}
, if 1 ≤ u ≤ t

= Ai,u,2 ∩
{
Zi,u ≥ γ

}
, if t < u ≤ T,

(3.3)

where γ := max{M t,K}. Because for 1 ≤ u ≤ t, Zi,u is known at time t and for i =
1, . . . , nx, µ

α
2.1(ȳt, s̄

c
t) = µi

t,t(ȳt, s̄
c
t), due to Lemma 3, one obtain that conditional on Ht

price at time t of the option on maximum is given by

CMT
t,w (Ht,K) =

nx∑
i=1

T∑
u=1

wi,uxi,u∧t exp
{
[ait,u∨t]

T
u∨t(ȳt, s̄

c
t)
}

× N
(
Ei,u, [µ

i
t,u∨t]

T
u∨t(ȳt, s̄

c
t),Σ22.1(s̄

c
t)
)

(3.4)

− K

nx∑
i=1

T∑
u=1

exp
{
[aα2.1]

T
t (ȳt, s̄

c
t)
}
N
(
Ei,u, [µ

α
2.1]

T
t (ȳt, s̄

c
t),Σ22.1(s̄

c
t)
)
,

where for any real numbers a, b ∈ R, a ∨ b = max{a, b} and a ∧ b = min{a, b}. In terms
of the random log price vector ¯̃xct the set Ai,u,2 is expressed by

Ai,u,2 =
{
L̃i,u

¯̃xct ≤ b̃i,u
}

(3.5)

for 1 ≤ u ≤ t and i = 1, . . . , nx, where b̃i,u :=
(
ln(Zi,u/w1,t+1), . . . , ln(Zi,u/wnx,T )

)T
and

L̃i,u := I[T−t]nx
. Now we consider second line of equation (3.3). To represent the set

Ai,u,2 ∩
{
Zi,u ≥ γ

}
in terms of the log price vector ¯̃xct , we define the following matrix

and vector:

Li,u :=

I[u−t−1]nx+i−1 −i[u−t−1]nx+i−1 0
0 −i[T−u+1]nx−i I[T−u+1]nx−i

0 −1 0

 ,
and

bγi,u :=

(
ln

(
wi,u

w1,t+1

)
, . . . , ln

(
wi,u

wi−1,u

)
, ln

(
wi,u

wi+1,u

)
, . . . , ln

(
wi,u

wnx,T

)
, ln

(
wi,u

γ

))T

.

For the matrix Li,u, its last row corresponds to the event
{
Zi,u ≥ γ

}
and other rows

correspond to the event Ai,u,2. In this case, we can deduce that

Ai,u,2 ∩
{
Zi,u ≥ γ

}
=

{
Li,u

¯̃xct ≤ bγi,u
}

(3.6)

for u < t ≤ T and i = 1, . . . , nx. Let us introduce a simple Lemma, which will be used
to price the call option on maximum.
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Lemma 4. Let ȳct | Ht ∼ N
(
µG(ȳt, s̄

c
t),Σ22.1(s̄

c
t)
)
under a generic probability mea-

sure P̃G. Then for all A ∈ Rk×[(T−t)nx] matrices, it holds

A¯̃xct | Ht ∼ N
(
µG(ȳt, s̄

c
t ,A),Σ22.1(s̄

c
t ,A)

)
under the generic probability measure P̃G, where µG(ȳt, s̄

c
t ,A) := A(IT−t ⊗M2)µ

G(ȳt, s̄
c
t)

and Σ22.1(s̄
c
t ,A) := A(IT−t ⊗M2)Σ22.1(s̄

c
t)(IT−t ⊗MT

2 )AT .

Due to equations (3.3), (3.5) and (3.6), we have

P̃G
[
Ei,u

∣∣Ht

]
=

{
P̃G

[
L̃i,u

¯̃xct ≤ b̃i,u
∣∣Ht

]
1Ai,u,1∩Bi,u

, if 1 ≤ u ≤ t,

P̃G
[
Li,u

¯̃xct ≤ bγi,u
∣∣Ht

]
, if t < u ≤ T

under a generic probability measure P̃G. We assume that weighted price at time u∗ of
i∗-th asset is maximum value in the history of the weighted prices of all assets up to and
including time t, that is,M t = Zi∗,u∗ . Let us denote a normal distribution function with
mean µ and covariance matrix Σ at point x by N (x, µ,Σ). Then, according to equation
(3.4) and Lemma 4, we can obtain that for given information Gt, price at time t of the
call option on maximum is given by

ĈMT
t,w (Gt,K, γ⋆) :=

∑
s̄ct

[
nx∑
i=1

T∑
u=t+1

wi,uxi,t exp
{
[ait,u]

T
u (ȳt, s̄

c
t)
}

× N
(
bγ⋆i,u, [µ

i
t,u]

T
u (ȳt, s̄

c
t , L

⋆
i,u),Σ22.1(s̄

c
t , L

⋆
i,u)

)
− K

nx∑
i=1

T∑
u=t+1

exp
{
[aα2.1]

T
t (ȳt, s̄

c
t)
}

(3.7)

× N
(
bγ⋆i,u, [µ

α
2.1]

T
t (ȳt, s̄

c
t , L

⋆
i,u),Σ22.1(s̄

c
t , L

⋆
i,u)

)]
f(s̄ct |Gt) +Wi∗,u∗ .

where L⋆
i,u = Li,u, b

γ⋆
i,u = bγi,u and

Wi∗,u∗ := 1Bi∗,u∗

∑
s̄ct

[(
wi∗,u∗xi∗,u∗ −K

)
exp

{
[aα2.1]

T
t (ȳt, s̄

c
t)
}

× N
(
b̃⋆i∗,u∗

, [µα
2.1]

T
t (ȳt, s̄

c
t , L̃

⋆
i∗,u∗

),Σ22.1(s̄
c
t , L̃

⋆
i∗,u∗

)
)]
f(s̄ct |Gt)

with Bi∗,u∗ = {Zi∗,u∗ ≥ K}, L̃⋆
i∗,u∗

= L̃i∗,u∗ , and b̃⋆i∗,u∗
= b̃i∗,u∗ . We refer to the term

Wi∗,u∗ as tail term of the call option on maximum. Therefore, due to Lemmas 1 and 2,
and the tower property of conditional expectation, price at time t of the call option on
maximum with maturity T and strike price K is obtained by

CMT
t,w (K) =

1

Dt
Ẽ
[
DT

(
MT −K

)+∣∣∣Ft

]
= Ẽ

[
ĈMT

t,w (Gt,K, γ)
∣∣Ft

]
=

∑
s̄t

ˆ
Π,Γ,P

CMT
t,w (Gt,K, γ)f̃(Π,Γ,P, s̄t|Ft)dΠdΓdP

Because in similar manner we can price other options using Lemmas 1 and 2, it is
sufficient to price the options for the information Gt. Now we list some option pricing
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formulas given Gt, which are originated from above formula (3.7) corresponding to the
call option on maximum of the domestic asset prices.
1. Let weighted price at time u∗ of i∗-th asset be a maximum value in the history of

the weighted prices of all assets up and including to time t. Then, conditional on
information Gt price at time t of the call option on maximum with strike price K
and expiration time T is given by

CMT
t,w (Gt,K) :=

1

Dt
Ẽ
[
DT

(
MT −K

)+ ∣∣∣ Gt

]
= ĈMT

t,w (Gt,K, γ),

where input parameters of equation (3.7) are Bi∗,u∗ = {Zi∗,u∗ ≥ K}, L̃⋆
i∗,u∗

=

L̃i∗,u∗ , b̃
⋆
i∗,u∗

= b̃i∗,u∗ , L
⋆
i,u = Li,u and bγ⋆i,u = bγi,u with γ =M t ∨K.

2. Let weighted price at time u∗ of i∗-th asset be a maximum value in the history of
the weighted prices of all assets up to and including time t. Then, conditional on
information Gt price at time t of a put option on maximum with strike price K and
expiration time T is given by

PMT
t,w (Gt,K) :=

1

Dt
Ẽ
[
DT

(
K −MT

)+ ∣∣∣ Gt

]
=

{
ĈMT

t,w (Gt,K,K)− ĈMT
t,w (Gt,K,M t) +Wi∗,u∗ if M t ≤ K,

0 if M t > K,

where input parameters of equation (3.7) are Bi∗,u∗ = {Zi∗,u∗ ≤ K}, L̃⋆
i∗,u∗

=

L̃i∗,u∗ , b̃
⋆
i∗,u∗

= b̃i∗,u∗ , L
⋆
i,u = Li,u, b

K⋆
i,u = bKi,u and bMt⋆

i,u = bMt
i,u .

3. Let weighted price at time u∗ of i∗-th asset is minimum value in the history of
the weighted prices of all assets up to and including time t. Then, conditional on
information Gt price at time t of a call option on minimum with strike price K and
expiration time T is given by

CmT
t,w (Gt,K) :=

1

Dt
Ẽ
[
DT

(
mT −K

)+ ∣∣∣ Gt

]
=

{
ĈMT

t,w (Gt,K,mt)− ĈMT
t,w (Gt,K,K) +Wi∗,u∗ if mt ≥ K,

0 if mt < K,

where input parameters of equation (3.7) are Bi∗,u∗ = {Zi∗,u∗ ≥ K}, L̃⋆
i∗,u∗

=

−L̃i∗,u∗ , b̃
⋆
i∗,u∗

= −b̃i∗,u∗ , L
⋆
i,u = −Li,u, b

K⋆
i,u = −bKi,u and bmt⋆

i,u = −bmt
i,u .

4. Let weighted price at time u∗ of i∗-th asset is minimum value in the history of
the weighted prices of all assets up to and including time t. Then, conditional on
information Gt price at time t of a put option on minimum with strike price K and
expiration time T is given by

PmT
t,w (Gt,K) :=

1

Dt
Ẽ
[
DT

(
K −mT

)+ ∣∣∣ Gt

]
= ĈMT

t,w (Gt,K, γ),

where input parameters of equation (3.7) are Bi∗,u∗ = {Zi∗,u∗ ≤ K}, L̃⋆
i∗,u∗

=

−L̃i∗,u∗ , b̃
⋆
i∗,u∗

= −b̃i∗,u∗ , L
⋆
i,u = −Li,u, and b

γ⋆
i,u = −bγi,u with γ = mt ∧K.

5. According to above formula for the call option on maximum, conditional on
information Gt price at time t of a lookback call option with expiration time T
is given by

LC
t,w(Gt) :=

1

Dt
Ẽ
[
DT

(
MT −MT

) ∣∣∣ Gt

]
= CMT

t,w (Gt, 0)− CMT
t,w̄ (Gt, 0)
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where for i = 1, . . . , nx, w̄i,T := wi,T and rest of the components of a vector w̄ are
zero.

6. According to above formula for the call option on minimum, conditional on
information Gt price at time t of a lookback put option with expiration time T
is given by

LP
t,w(Gt) :=

1

Dt
Ẽ
[
DT

(
mT −mT

) ∣∣∣ Gt

]
= CmT

t,w̄ (Gt, 0)− CmT
t,w (Gt, 0),

where i = 1, . . . , nx, w̄i,T := wi,T and rest of the components of a vector w̄ are zero.

It should be noted that if we know distribution of a random vector vec(Π,Γ,P, s̄t)
conditional on Ft, then one can price options by Monte–Carlo simulation methods. Let
us illustrate an option pricing method using Monte–Carlo methods for the call option on
maximum. To price the option by Monte–Carlo methods, first, we generate a sufficiently
large number of random realizations Vt∗ := (Π∗,Σ∗,P∗, s̄t∗) from f(Π,Σ,P, s̄t|Ft). Then

we substitute them into the price formula of call option on maximum, CMT
t,w (Gt,K)

obtain a large number of CMT
t,w (Vt∗)s. Finally, we average CMT

t,w (Vt∗)s. By the law

of large numbers, the average converges to theoretical option price CMT
t,w (K). This

simulation method is better than a simulation method which is based on realizations
from f(ȳct ,Π,Γ,P, s̄t|Ft), because the former one has lower variance than the last one.
To make statistical inference about the parameter vector conditional on the informa-

tion Ft, one may use the Gibbs sampling method, which generates a dependent sequence
of parameters. In the Bayesian statistics, the Gibbs sampling is often used when the
joint distribution is not known explicitly or is difficult to sample from directly, but the
conditional distribution of each variable is known and is easy to sample from. Very
simple explanation of the Gibbs sampling can be found in [7], which is mainly focused
on marginal distribution. Monte–Carlo methods using the Gibbs sampling of MS–VAR
process are proposed by authors. In particular, Gibbs sampling method of MS–AR(p)
process is provided by [1] and its multidimensional extension is given by [20].
Note that using the idea in [4] one can obtain similar pricing formulas that correspond

to rainbow options and lookback options of foreign asset prices and foreign currencies.

4. Locally Risk-Minimizing Strategy

[11] introduced the concept of mean–self–financing and extended the concept of
complete market into incomplete market. If a discounted cumulative cost process is a
martingale, then a portfolio plan is called mean-self-financing. In discrete time case, [10]
developed a locally risk-minimizing strategy and obtained a recurrence formula for
optimal strategy. According to [24] (see also [9]), under a martingale probability measure
the locally risk-minimizing strategy and remaining conditional risk-minimizing strategy
are same. In this section, we will consider the locally risk-minimizing strategy for the
call option on maximum. In an insurance industry, for continuous time unit–linked term
life and pure endowment insurances with guarantee, locally risk-minimizing strategies
are obtained by [22].

To simplify notations we define: for t = 1, . . . , T , Xt := (X1,t, . . . , Xnx,t)
T is a

discounted price vector at time t and ∆Xt := Xt −Xt−1 is a difference vector at time
t of the price vectors, where Xi,u := Duxi,u is a discounted price at time u of i-th
asset. Note that ∆Xt is a martingale difference with respect to the filtration {Ht}Tt=0
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and risk-neutral measure P̃. Following the idea in [9] and [10], one can obtain that for
the filtration {Ft}Tt=0 and a generic discounted contingent claim HT , under risk-neutral
measure P̃ locally risk-minimizing strategy (h0, h) is given by the following equations:

ht+1 = Ω−1
t+1Λt+1 and h0t+1 = Vt+1 − hTt+1Xt+1 (4.1)

for t = 0, . . . , T − 1, where, Ωt+1 := E
[
∆Xt+1∆X

T

t+1

∣∣Ft

]
, Λt+1 := C̃ov

[
∆Xt+1, HT

∣∣Ft

]
and V t+1 := Ẽ[HT |Ft+1] for a square integrable random variable HT . It should be noted
that since all the options are originated from the call option on maximum of several asset
prices, it will be sufficient to consider locally risk–minimizing strategies that correspond
to the call option on maximum. Because the difference of discounted price process ∆Xt

is a martingale difference with respect to the risk-neutral probability measure P̃ and
filtration {Ht}Tt=0, it follows that

Λt+1 = Ẽ
[
HTXt+1

∣∣Ft

]
− V tXt. (4.2)

For product of discounted price at time u of i-th asset and discounted price at time s of
j-th asset, it can be shown that for i, j = 1, . . . , nx and t ≤ u, v,

Ẽ
[
Xi,uXj,v|Ht

]
= Xi,tXj,t exp

{
βiT
t,uΣ̄2(s̄

c
t)β

j
t,v

}
= Xi,tXj,t exp

{ u∧v∑
m=t+1

σij,m(sm)

}
,

(4.3)
where σij,m(sm) is (i, j)-th element of the random matrix at regime sm, Σm(sm).
Therefore, as Xt is a martingale with respect to filtration {Ht}Tt=0 and risk-neutral
measure P̃, equation (4.3) allows us to conclude that for i, j = 1, . . . , nx, (i, j)-th element
of the random matrix Ωt+1 is given by

ωij,t+1 = Ẽ
[
∆Xi,t+1∆Xj,t+1|It

]
= Xi,tXj,t

(
Ẽ
[ N∑
st+1=1

exp
{
σij,t+1(st+1)

}
pst+1

∣∣∣∣It]− 1

)
.

(4.4)
Due to equation (4.3), as Xi,t, Xj,t > 0, one can define the following new probability
measure:

P̃i,j
t,u,v[A|Ht] :=

exp
{
− βiT

t,uΣ̄2(s̄
c
t)β

j
t,v

}
Xi,tXj,t

ˆ
A

Xi,uXj,vP̃[ω|Ht], for all A ∈ HT .

It can be shown that conditional distribution of random vector ȳct given Ht is given by

ȳct | Ht ∼ N
(
µi,j
t,u,v(ȳt, s̄

c
t),Σ22.1(s̄

c
t)
)

under probability measure P̃i,j
t,u,v, where µ

i,j
t,u,v(ȳt, s̄

c
t) := µα

2.1(ȳt, s̄
c
t) + Ψ−1

22 Σ̄2(s̄
c
t)(β

i
t,u +

βj
t,v). In order to obtain locally risk-minimizing strategies that correspond to the call

option on maximum, we need to calculate conditional expectations that have forms
Ẽ[DTXj,v1A|Ht], Ẽ[Xi,uXj,v1A|Ht] and Ẽ[DT /DuXi,uXj,v1A|Ht] for a generic set A ∈
HT . It follows from the domestic and above probability measures and Lemma 3 that for
t ≤ u, v,

Ẽ[DuXj,v1A|Ht] = DtXj,t exp
{
[ajt,v]

u
t (ȳt, s̄

c
t)
}
N
(
A, [µj

t,v]
u
t (ȳt, s̄

c
t),Σ22.1(s̄

c
t)
)
, (4.5)



14 BATTULGA GANKHUU

and

Ẽ[DT /DuXi,uXj,v1A|Ht] = Xi,tXj,t exp

{ u∧v∑
m=t+1

σij,m(sm) + [ai,jt,u,v]
T
u (ȳt, s̄

c
t)

}
× N

(
A, [µi,j

t,u,v]
T
u (ȳt, s̄

c
t),Σ22.1(s̄

c
t)
)
. (4.6)

In terms of the discounted price process Xi,t, the discounted contingent claim of the call
option on maximum, HT , which is given by equation (3.2) can be represented by

H
1

T =

nx∑
i=1

t∑
u=1

DT

(
wi,uxi,u −K

)
1Ei,u +

nx∑
i=1

T∑
u=t+1

DT /Duwi,uXi,u1Ei,u

− K

nx∑
i=1

T∑
u=t+1

DT 1Ei,u
.

To obtain Λt+1 corresponding to the call option on maximum, we define Rj,t+1(Gt) :=
Ẽ
[
HTXj,t+1|Gt

]
. Then, equations (4.5)-(4.6) and Lemma 1 allow us to conclude that

the expectation is given by the following equations:

Rj,t+1(Gt) =
∑
s̄ct

[(
wi∗,u∗xi∗,u∗ −K

)
DtXj,t exp

{
[ajt,t+1]

T
t (ȳt, s̄

c
t)
}

× N
(
b̃i∗,u∗ , [µ

j
t,t+1]

T
t (ȳt, s̄

c
t , L̃i∗,u∗),Σ22.1(s̄

c
t , L̃i∗,u∗)

)
1Bi∗,u∗

+

nx∑
i=1

T∑
u=t+1

wi,uXi,tXj,t exp
{
σij,t+1(st+1) + [ai,jt,u,t+1]

T
u (ȳt, s̄

c
t)
}

× N
(
bγi,u, [µ

i,j
t,u,t+1]

T
u (ȳt, s̄

c
t , Li,u),Σ22.1(s̄

c
t , Li,u)

)
− K

nx∑
i=1

T∑
u=t+1

DtXj,t exp
{
[ajt,t+1]

T
t (ȳt, s̄

c
t)
}

(4.7)

× N
(
bγi,u, [µ

j
t,t+1]

T
t (ȳt, s̄

c
t , Li,u),Σ22.1(s̄

c
t , Li,u)

)]
f(s̄ct |Gt).

To simplify notations, let us introduce the following vector:

Rt+1(Gt) := (R1,t+1(Gt), . . . , Rnx,t+1(Gt))
T .

Therefore, due to equations (4.2) and (4.7) one can obtain that for the call option on
maximum, we have

Λt+1 = Ẽ
[
HTXt+1|Ft

]
− Ẽ

[
HT |Ft

]
Xt = Ẽ

[
Rt+1(Gt)|Ft

]
− C

MT

t,w (K)Xt, (4.8)

where C
MT

t,w (K) := DtC
MT
t,w (K). As a result, if we substitute equations (4.4) and (4.8)

into equation (4.1), we can obtain the locally risk–minimizing strategy for the call option
on maximum of several asset prices.

5. Conclusion

Economic variables play important roles in any economic model, and sudden and
dramatic changes exist in the financial market and economy. Therefore, in the paper,
we introduced the MS–VAR process and obtained pricing and hedging formulas for the
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rainbow options and lookback options on maximum and minimum of several asset prices
using the risk–neutral valuation method and locally risk–minimizing strategy.
It should be noted that the random MS–VAR process contains a simple VAR process,

vector error correction model (VECM), BVAR, and MS–VAR process. To use our model,
which is based on the MS–VAR process, as mentioned before one can use Monte–Carlo
methods, see [20]. For the simple MS–VAR process, maximum likelihood methods are
provided by [14–16] and [20] and for large BVAR process, we refer to [2]. To summarize,
the main advantages of the paper are

– because we consider VAR process, the spot rate is not constant and is explained by
its own and other variables’ lagged values,

– it introduced economic variables, regime–switching, and heteroscedasticity to the
options,

– it introduced the random MS–VAR process for valuation of the options, so the
model will overcome over–parametrization,

– valuation and hedging of the options is not complicated,
– and the model contains simple VAR, VECM, BVAR, and MS–VAR processes.
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26. Stulz, RenéM. 1982. ”Options on the minimum or the maximum of two risky assets: analysis and

applications.” Journal of Financial Economics 10(2): 161–185.
27. Tiao, George C., and Box, George EP. 1981. ”Modeling multiple time series with applications.”

Journal of the American Statistical Association 76(376): 802–816.
28. Tong, Howell. 1983. ”Threshold models in non-linear time series analysis.” Springer Science &

Business Media.
29. Zucchini, Walter., MacDonald, Iain L., and Langrock, Roland. 2016. ”Hidden Markov Models for

Time Series: An Introduction Using R,” 2nd edition. CRC press.

Battulga Gankhuu
Applied Mathematics
National University of Mongolia
Ulaanbaatar, Mongolia.

battulga gan@yahoo.com

©The Author(s). 2023 Open access. This is an open-access article distributed under the terms of the
CC BY-NC 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/).


	Introduction
	Review
	Rainbow Options
	Locally Risk-Minimizing Strategy
	Conclusion
	References

