On 3rd March 2018, the Editorial Board of the Mongolian Journal of Chemistry decided to retract this article because of an authorship dispute. Retraction Notice: DOI: http://dx.doi.org/10.5564/mjc.v18i44.938

Mongolian Journal of Chemistry

Institute of Chemistry & Chemical Technology

Mongolian Academy of Sciences

Effect of pretreatment temperature on catalytic performance of the catalysts derived from cobalt carbonyl cluster in Fischer-Tropsch Synthesis

O.Byambasuren1*, D.Ulziibayar2, D.Chiibaatar2

¹Department of Research and Innovation, Mongolian National University, Ulaanbaatar, ²School of Mining and Engineering, Mongolian National University,

ARTICLE INFO: Received: 29 Sep, 2016; Revised: 29 Nov, 2016 Accepted: 7 Dec, 2016

Abstract: The monometallic cobalt-based catalysts were prepared by pretreating the catalysts derived from carbonyl cluster precursor $(CO)_6Co_2CC(COOH)_2$ supported on γ -Al₂O₃ with hydrogen at 180, 220, and 260°C respectively. The temperature effect of the pretreatments on the structure evolution of cluster precursors and the catalytic performance of the Fischer-Tropsch (F-T) synthesis was investigated. The pretreated catalyst at 220°C with unique phase structure exhibited best catalytic activity and selectivity among three pretreated catalysts. Moreover, the catalysts exhibited high dispersion due to the formation of hydrogen bonds between the cluster precursor and γ -Al₂O₃ support.

Keywords: Cobalt carbonyl cluster; Co-based catalyst; pretreatment temperature; F-T synthesit

Copyright © 2016 Byambasuren O, et al. This is an open access article distributed under the Creative Commons Attribution 4.0 International License CC BY, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

It is well known that metal carbonyl clusters are able to play unusual roles in catalytic activity and selectivity for a variety of reactions [1, 2]. Many homo- and heterogeneous catalysts have been prepared by using the clusters as catalyst precursors [3, 4]. Among them, the heterogeneous catalysts prepared by metallic carbonyl cluster precursors loaded on solid supports exhibited distinct characteristics and activities in heterogeneous catalyst system [5, 6]. The published studies indicated that the carbonyl precursors, such as $\text{Co}_2(\text{CO})_8$, $\text{Co}_4(\text{CO})_{12}$ and $\text{Os}_3(\text{CO})_{12}$ [7-9], are excellent precursors due to their small metallic particles, which possibly emerge from the bonds between metal atoms in their zero oxidation state in these complexes. Moreover, these complexes were assumed to mimic small metallic particles covered with CO ligands [10]. Potential advantages of carbonyl based catalysts are the following: greater metal dispersion, higher number of zero valence obalt species available, well defined organometallic cluster structure. Thus, the catalysts synthesized using theses precursors would be more interesting by removing the ligands of the clusters to gain coordinative unsaturation in cluster catalysis [11-13]. The activation of supported metal carbonyl catalysts has generally been done by thermal decomposition in an inert atmosphere [14]. Siani et al. [15] investigated the pretreatment atmosphere effect on the active metal species over the bimetallic cluster derived PtFe/SiO₂ catalyst for the oxidation of CO, and found that the surface species formed on the support have different structure after the removal of organic ligands when the

*corresponding author: e-mail: b.oyunerdene@mnu.edu.mn DOI: http://dx.doi.org/10.5564/mjc.v17i43.745

catalyst is treated in either He or H₂ flow. Furthermore, the ctivity depends strongly on the structure of the surface species. On the other hand, the pretreatment temperature can also be considered as an important factor to influence the structure of the surface species. For example, the cluster $[Ir_4(CO)_{12}]$ loaded on γ -Al₂O₃, upon treatment in H₂ at 300°C, gives no disruption of the tetrahedral metal frame [16]. However, when H₃Re₃(CO)₁₂ was adsorbed onto γ -Al₂O₃, and was treated in H₂ at 400°C, the average Re-Re distance was contracted and a new structure was formed though the surface structure is still predominantly trirhenium [17]. Literature data [18] indicated that the optimum pretreatment temperature helps to obtain more active sites by releasing CO ligands without decomposing the frameworks of clusters. To date, the detailed study of the relationship between the structure evolution of cluster precursor and the catalytic performance of catalyst is still challenging.

In the present study, cobalt-based catalysts were prepared by using cobalt carbonyl cluster containing carboxyl groups $(CO)_6Co_2CC(COOH)_2$ as catalyst precursor. The precursor was loaded on γ -Al₂O₃ support and further pretreated under H₂-Ar flow at various temperatures respectively. The carbonyl and carboxyl ligands removal process and structure evolution of the precursor and pretreated catalysts were examined by TG and IR techniques. The catalytic performance of the catalysts was also investigated for the F-T synthesis.

EXPERIMENTAL

General details: Dicobalt octacarbonyl $Co_2(CO)_8$ and acetylenedicarboxylic acid HOOCCCCOOH were purchased from Alfa Aesar and used as received. $(CO)_6Co_2CC(COOH)_2$ was prepared under dry N₂ using

standard Schlenk techniques as previous description with minor modification [19]. We have modified the Schlenk method that liquid nitrogen was replaced in the port of solvent coming down, which prevent to volatile the solvent. All the solvents were dehydrated with an appropriate drying agent and deoxidized by distilling under Nitrogen atmosphere before use. Schlenk techniques were employed in the synthesis and handling of all air-sensitive materials. *Catalyst preparation:* The y-Al₂O₂ support (40-60 mesh) was calcined in air at 500°C for 10h prior to use to remove impurities of the surface. The catalyst was prepared as follows (10 wt% Co): The pretreated γ -Al₂O₃ support was impregnated with (CO)₆Co₂CC(COOH)₂ in THF kept for 24 hours in the room temperature with nitrogen flow. Then the excess solvent THF was removed under nitrogen flow. Subsequently, the dry solid catalyst was obtained, and labeled as Co₂/Al₂O₂. The freshly prepared Co₂/Al₂O₂ was in situ pretreated respectively at 180, 220, and 260°C for 10h under hydrogen flow, labeled as Co₂(180°C)/γ-Al₂O₂, Co₂(220°C)/γ-Al₂O₃ and Co₂(260°C)/γ-Al₂O₃.

Fischer–Tropsch synthesis catalytic evaluation: The F-T synthesis was performed in a stainless steel fixed-bed reactor (i.d. 10 mm). The catalyst (4.0 g, 40-60 mesh) was mixed with the same-sized quartz in order to improve the temperature distribution within the reactor. Prior to the F-T reaction, as confortable catalytic condition the catalysts were pretreated at 180, 220, and 260°C for 10h with H₂ under atmospheric pressure and cooled down to room temperature in the corresponding atmosphere. Then the reaction pressure was increased up to 2.0 MPa before switching to a flow mixture gas of CO, H₂ and Ar (volume ratio of H₂:CO:Ar = 20:10:1). The gas flow was set at a space velocity of 500 hand the reaction temperature was slowly increased to 220°C at a ramp rate of 1°C/min. CO, CH, Ar and CO, in the gas effluent were analyzed on-line by a Shimadzu GC-8A gas chromatograph equipped with a thermal conductivity detector (TCD) using TDX-01 column. And the light hydrocarbons $(C_1 - C_5)$ were analyzed by a Shimadzu GC-8A gas chromatograph on-line equipped with a flame ionization detector (FID) using a Porapack-Q column. Catalyst characterization: Infrared spectroscopic analys

IR spectrawere recorded with a NEXUS-670 FTIR spectrometer equipped with an MCT (Mercury cadmium elluride) detector, and the spectral resolution was 2 cm⁻¹. The samples are typically examined in KBr pellets after horough mixing by pestling and tableting.

Differential analysis: thermal gravimetric Thermogravimetric-differential scanning calorimetry (TG-DSC) measurements were carried out on a NETZSCH STA 449F3 thermogravimetric analyzer from room temperature to 800°C with a rate of 10°C/min under nitrogen atmosphere.

RESULTS AND DISCUSSION

TG analysis: Figure 1 showed TG curve of the (CO)₆Co₂CC(COOH)₂ precursor from room temperature to 800°C under nitrogen atmosphere. There are two steps of weight loss for the sample. The first weight loss of 41.5% from 73°C to 257°C was corresponded to the removal of carbonyl ligands (calculated: 42.0%), and the next weight loss of 21.4% from 257°C to 418°C was attributed to the decomposition of two -CCOOH groups of the cluster (calculated: 22.5%) (No further reading about the data available so far). In addition, a small plateau was observed during the first step of weight loss.

The structural scheme of the cluster precursor

rom the available structural scheme of the complex (Figure ?), we could suppose that this plateau corresponded to a phasewherethevolatilecarbonylgroupshavebeenremoved first. (There is a TG analysis explanation in the Figure 1) IR analysis: Infrared spectra of the pure crystalline precursor (CO)₆Co₂CC(COOH)₂, the fresh Co₂/γ-Al₂O₃ catalyst and γ -Al₂O₃ support are presented in Figure 3. The set of bands at 2118, 2090, and 2038 cm⁻¹ in v_{co} region and at 1656, 1526, 1395, 1203 cm⁻¹ in v_{coo} region represented characteristics of the (CO)₆Co₂CC(COOH)₂ cluster precursor (Figure 3 (a)). The absorption frequencies at 2979, 881, and 751 cm⁻¹ were assigned to the coordinated acetylene C=C stretching bands, which were slightly shifted to lower frequencies compared to those of coordinated acetylene without carboxyl groups [20]. For the Co_2/γ -Al₂O₃ sample, the profile and location of the carbonyl bands remained unchanged (Figure 3 (b)), implicating that the impregnated cluster precursor retains the structural feature of the cobalt core. However, the location and intensity for the carboxyl group stretching v_{coo} and the v_{OH} stretching (3421 cm⁻¹) changed significantly compared to pure crystalline precursor, suggesting that hydrogen bonds were formed between the carboxyl groups of cluster framework and the hydroxyl groups of support (It is a hydroxyl group from -OH). Anchoring the carbonyl cluster to the support via hydrogen bonds would make the cobalt clusters on support surface immobile and to congregate, which would be favorable for improving cobalt dispersion and should contribute to catalytic activity

Catalysts	CO Conv.	э_{сн4}	C2-C4	S _{C5+}
Co ₂ (180°C)/γ-Al ₂ O ₃	76	26		73
Co ₂ (220°C)/γ-Al ₂ O ₃	89	16	3	81
Co ₂ (260°C)/γ-Al ₂ O ₃	86	22		77
Co ₂ /γ-Al ₂ O ₃	60	26		73

(Clearly, the uniq catalytic behavior depended on the bond formation via reaction between the cluster and surface hydroxyl groups.)

Catalytic performance analysis: The catalytic performance of the cobalt carbonyl cluster catalysts pretreated at various temperatures was performed. The CO conversion and product selectivity were measured after 10 h on stream. The results are shown in Table 1 and the Co2/Y-Al2O3 catalyst without pretreatment wa used as reference. It can be seen that all the pretreated catalysts exhibited enhanced catalytic performance than the reference catalyst. Furthermore, the Co₂(220°C)/γ-Al2O3 catalysts exhibited the highest activity among three The Co₂(260°C)/y-Al₂O₃ catalyst pretreated catalysts. showed comparable activity and the Co₂(180°C)/γ-Al₂O₃ catalyst had the lowest activity for F-T reaction. Similar trend was observed for selectivity of C_5^+ . On the of TG result, the reason for the lowest activity for Co₂(180°C))Y-Al₂O₃ catalyst was that the amount of active sites existed around the cobalt core was significantly less, since the coordinated CO still occupied the active sites when the catalyst was decarbonylated at 180°C in H₂ flow. In contrast, the cleaner cobalt particle surface and specific phase structure can be obtained by using 220 and 260°C as pretreated temperature. It can provide more active sites than the catalysts prepared at lower temperature. In the case of the $Co_2(260^{\circ}C)/\gamma$ -Al₂O₃ catalyst, the weak bonds between the cobalt center and the CO molecules located at specially active sites directly led to the lower abundance of activated CO molecules, resulting in the lower catalytic activity and selectivity.

CONCLUSIONS

In this work, cobalt-based catalysts were prepared by using $(CO)_6Co_2CC(COOH)_2$ precursor loaded on γ -Al₂O₃support. The catalysts exhibited high dispersion by anchoring

the cluster precursor to γ -Al₂O₃ support via hydrogen bonds between them, and most of the cobalt particles dispersed as amorphous phase on the support. The catalysts were further pretreated in-situ in H₂ flow at 180, 220, and 260°C respectively. The precursor clusters on the support passed through an interesting procedure of structure evolution during pretreatment process. Different pretreatment temperature resulted in different structure of cobalt species. The unique structure that corresponded to producing more activated CO, such as the structure produced in Co₂(220°C)/ γ -Al₂O₃, was favorable for the F-T synthesis and could exhibit high catalytic performance.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the Research grant of Higher education reform project and Asian development bank (grant no. 599).

REFERENCES

- Siani A., Captain B., Alexeev O.S., Stafyla E., Hungria A.B., *et al.* (2006) Improved CO Oxidation in the Presence and Absence of Hydrogen over Cluster-Derived PtFe/SiO₂ Catalysts. *Langmuir*, 22, 5160–5167.
- Toth M., Kiss J., Oszko A., Potari G., Laszlo B., *et al.* (2012) Hydrogenation of Carbon Dioxide on Rh, Au and Au-Rh Bimetallic Clusters Supported on Titanate Nanotubes, Nanowires and TiO₂. *Top. Catal.*, **55**, 747–756.
- Castiglioni M., Deabate S., Garrone E., Giordano R., Onida B., *et al.* (1997) Metal carbonyl clusters as precursors of heterogeneous catalysts: Hydrogenation and disproportionation of monoenes, dienes, and arenes in the presence of H₂Ru₄(CO)₁₃, H₂FeRu₃(CO)₁₃, and HRuCo₃(CO)₁₂ supported and activated on chromosorb. Characterization of the

metal particles derived from $H_2Ru_4(CO)_{13}$ by means of IR spectroscopy and TEM microscopy, *Journal of Cluster Science*, **3**, 381-405.

- Mukhopadhyay K., Chaudhari R.V. (2003) Heterogenized HRh(CO)(PPh)₃)₃ on zeolite Y using phosphotungstic acid as tethering agent: A novel hydroformylation catalyst. *Journal of Catalysis*, **213**, 73–77.
- Choplin A., Quignard F. (1998) From supported homogeneous to heterogeneous molecular catalysts. *Coordination Chemistry Reviews*, **178–180**, 1679– 1702.
- Niemela M.K., Krause A.O.I., Vaara T., Kiviaho J.J., Reinikainen M.K.O. (1996) The effect of the precursors on the characteristics of CO SIO₂ catalysts. *Applied Catalysis. A-Gen.*, 147, 2, 325-345.
- Shen G.C., Shido T., Ichikawa M. (1996) Cobalt clusters in NaY zeolite cages: synthesis and characterization. *Journal of Physical Chemistry*, **100** (42), 16947-16956.
- 8. Gates B.C. (1995) Supported Metal Clusters: Synthesis, Structure, and Catalysis. Chem. Rev., **95**, 3, 511-522.
- Koningsberger D.C., Gates B.C. (1992) Nature of the metal-support interface in supported metal catalysts. *Cat. Lett.*, **14**, 271-274.
- Kurhinen M., Pakkanen T.A. (2000) Temperature-Programmed Decomposition, Oxidation, and Reduction Studies of Co₂(CO)₈ Supported on Alumina *Langmuir*, **16**, 2658-2664.
- Siani A., Alexeev O.S., Captain B., Lafaye G., Marécot P., et al. (2008) Synthesis of cluster-derived PtFe/SiQ₂ catalysts for the oxidation of CO Journal of Catalysis, *Journal of Catalysis*, 255, 162-179.

- 12. Gates B.C. (2000) Supported metal cluster catalysts. *Journal of Molecular Catalysis. A Chemical*, **163**, 55–65.
- Kirlin P.S., Zon van F.B.M., Koningsberger D.C., Gates B.C. (1990)Ligand effects in supported metal carbonyls. *Journal of Physical Chemistry*, **94**, 8439 -8450.
- Suvanto S., Pakkanen T.A., Backman L. (1999) Controlled deposition of Co-2(CO)(8) on silica in a fluidized bed reactor: IR, chemisorption and decomposition studies. *Applied Catalysis. A-Gen.* 177, 25-36.
- Lei X.J., Shang M.Y., Fehlner T.P., Werner R., Haase W., et al. (1997) Clusters as ligands .3. Generation of tricobalt cluster carboxylate-bridged fron-cobalt and manganese-cobalt mixed-metal alkoxide cubes from iron and manganese tricobalt cluster metal carboxylates. *Journal of Organometallic Chemistry*, 541, 57-70.
- 16. Tamura F., Nakamura A. (1969) Spectroscopic Studies on Coordinated Acetylene, Inorganic Chemistry, 8, 1179
- Calvo-Perez V., Vega A.C., Cortes P. Spodine E. (2002) Effect of the organometallic fragment R=-CCHCo₂(CO)₆ on the properties of M₂{OOCR }₄ clusters (M=Mo, Cu). *Inorg. Chim. Acta.*, 333, 15–24.
- Zwart J., Snei R. (1985) Metal carbonyl clusters in the catalytic hydrogenation of carbon monoxide, *Journal* of *Molecular Catalysis*. 30, 305-352.
- Ernst B., Hilaire L., Kiennemann A. (1999) Effects of highly dispersed ceria addition on reducibility, activity and hydrosarbon chain growth of a Co/SiO₂ Fischer-Tropsch catalyst. *Catalysis Today*, **50**, 413-427.
- 20. Takeuchi K., Matsuzaki T., Hanaoka T. (1989) Alcohol synthesis from syngas over cobalt catalysts prepared from $Co_2(C0)_8$. Journal of Molecular Catalysis, **55**(1), 361~370.