Production of iron-binding protein hydrolysate with foaming and emul-sifying properties from featherback (Chitala ornata) skin
DOI:
https://doi.org/10.5564/mjc.v25i52.3477Keywords:
Featherback skin, functional property, iron-binding capacity, protein hydrolysateAbstract
This study utilized featherback skin to generate a versatile protein hydrolysate having capacities of iron chelation, emulsification, foaming and amino acid supplement. The hydrolysate obtained under the chosen condition (Alcalase, the skin:water ratio of 1:9 (w/v), pH 7.5, 55°C, enzyme:substrate (E:S) ratio of 40 U/g protein, 4 h of hydrolysis) showed an iron-binding capacity (IBC) of 7085.2 ± 4.2 (μg Fe2+/g protein), being equivalent to that of ethylenediaminetetraacetic acid disodium salt (Na2EDTA). Together with a high content of hydrophobic amino acids (63.34 mg/L), in the pH range 3-8, the emulsifying property of the hydrolysate was remarkable with emulsifying activity index (EAI) of 0.16-0.21 m2/g protein and emulsifying stability index (ESI) of 35.1-107.1 min, which were 1.7- 2.3 folds lower and 1.6-5.0 folds higher than those of sodium caseinate, respectively. Meanwhile, the hydrolysate exhibited mild foaming property with its foaming capacity (FC) and foaming stability (FS) being 3.6-16.6 folds lower than those of albumin.
Downloads
25
References
Zhang Y.Y., Stockmann R., Ng K., Broadbent J.A., Stockwell S., et al. (2023) Characterization of Fe(III)-binding peptides from pea protein hydrolysates targeting enhanced iron bioavailability. Food Chem., 405, 134887. https://doi.org/10.1016/j.foodchem.2022.134887
Athira S., Mann B., Sharma R., Pothuraju R., and Bajaj R.K. (2021) Preparation and characterization of iron-chelating peptides from whey protein: An alternative approach for chemical iron fortification. Food Res. Int., 141, 110133. https://doi.org/10.1016/j.foodres.2021.110133
Vo T.D.L., Pham K.T., Le V.M.V., Lam H.H., Huynh O.N., et al. (2020) Evaluation of iron-binding capacity, amino acid composition, functional properties of Acetes japonicus proteolysate and identification of iron-binding peptides. Process Biochem., 91, 374-386. https://doi.org/10.1016/j.procbio.2020.01.007
Fan C., Ge X., Hao J., Wu T., Liu R., et al. (2023) Identification of high iron–chelating peptides with unusual antioxidant effect from sea cucumbers and the possible binding mode. Food Chem., 399 133912. https://doi.org/10.1016/j.foodchem.2022.133912
Xu B., Wang X., Zheng Y., Shi P., Zhang Y., et al. (2022) Millet bran globulin hydrolysate derived tetrapeptide-ferrous chelate: Preparation, structural characterization, security prediction in silico, and stability against different food processing conditions. LWT-Food Sci. Technol., 165, 113673. https://doi.org/10.1016/j.lwt.2022.113673
Ying L., Kaihua W., Xiaoguang M., Yajuan W., Tuo Z., et al. (2017) Separation and Identification of Iron-chelating Peptides from Defatted Walnut Flake by NanoLC-ESI-MS/MS and De novo Sequencing. Process Biochem., 59, 223-228. https://doi.org/10.1016/j.procbio.2017.05.010
Hajj S.E., Irankunda R., Echavarría J.A.C., Arnoux P., Paris C.e., et al. (2023) Metal-chelating activity of soy and pea protein hydrolysates obtained after different enzymatic treatments from protein isolates. Food Chem., 405, 134788. https://doi.org/10.1016/j.foodchem.2022.134788
Du Y.-N., Hong J.-N., Xu S.-Q., Wang Y.-Q., Wang X.-C., et al. (2022) Iron-chelating activity of large yellow croaker (Pseudosciaena crocea) roe hydrolysates. J. Food Process. Preserv., 46, e17080. https://doi.org/10.1111/jfpp.17080
Lin S., Hu X., Li L., Yang X., Chen S., et al. (2021) Preparation, purification and identification of iron-chelating peptides derived from tilapia (Oreochromis niloticus) skin collagen and characterization of the peptide-iron complexes. LWT-Food Sci. Technol., 149, 111796. https://doi.org/10.1016/j.lwt.2021.111796
Gui M., Gao L., Rao L., Li P., Zhang Y., et al. (2022) Bioactive peptides identified from enzymatic hydrolysates of sturgeon skin. J. Sci. Food Agric., 102, 1948-1957. https://doi.org/10.1002/jsfa.11532
Zhang X., Dai Z., Zhang Y., Dong Y., and Hu X. (2022) Structural characteristics and stability of salmon skin protein hydrolysates obtained with different proteases. LWT - Food Sci. Technol., 153, 112460. https://doi.org/10.1016/j.lwt.2021.112460
Viji P., Phannendra T.S., Jesmi D., Madhusudana Rao B., Dhiju Das P.H., et al. (2019) Functional and antioxidant properties of gelatin hydrolysates prepared from skin and scale of sole fish. J. Aquat. Food Prod., 28, 976-986. https://doi.org/10.1080/10498850.2019.1672845
Pan J., Jia H., Shang M., Li Q., Xu C., et al. (2018) Effects of deodorization by powdered activated carbon, β-cyclodextrin and yeast on odor and functional properties of tiger puffer (Takifugu rubripes) skin gelatin. Int. J. Biol. Macromol., 118, 116-123. https://doi.org/10.1016/j.ijbiomac.2018.06.023
Casanova F., Mohammadifar M.A., Jahromi M., Petersen H.O., Sloth J.J., et al. (2020) Physico-chemical, structural and techno-functional properties of gelatin from saithe (Pollachius virens) skin. Int. J. Biol. Macromol., 156, 918-927. https://doi.org/10.1016/j.ijbiomac.2020.04.047
Nwachukwu I.D. and Aluko R.E. (2019) A systematic evaluation of various methods for quantifying food protein hydrolysate peptides. Food Chem., 270, 25-31. https://doi.org/10.1016/j.foodchem.2018.07.054
Vo T.D.L., Pham K.T., and Doan K.T. (2021) Identification of Copper-Binding Peptides and Investigation of Functional Properties of Acetes japonicus Proteolysate. Waste Biomass. Valor., 12, 1565–1579. https://doi.org/10.1007/s12649-020-01112-3
Fu Y., Liu J., Hansen E.T., Bredie W.L.P., and Lametsch R. (2018) Structural characteristics of low bitter and high umami protein hydrolysates prepared from bovine muscle and porcine plasma. Food Chem., 257, 163–171. https://doi.org/10.1016/j.foodchem.2018.02.159
Zhang Y., Ding X., and Li M. (2021) Preparation, characterization and in vitro stability of iron-chelating peptides from mung beans. Food Chem., 349, 129101. https://doi.org/10.1016/j.foodchem.2021.129101
Gómez L.J., Gómez N.A., Zapata J.E., López-García G., Cilla A., et al. (2020) Optimization of the Red Tilapia (Oreochromis spp.) Viscera Hydrolysis for Obtaining Iron-Binding Peptides and Evaluation of In Vitro Iron Bioavailability. Foods, 9, 883. https://doi.org/10.3390/foods9070883
Shu G., Zhang B., Zhang Q., Wan H., and Li H. (2017) Effect of Temperature, pH, Enzyme to Substrate Ratio, Substrate Concentration and Time on the Antioxidative Activity of Hydrolysates from Goat Milk Casein by Alcalase. Acta Univ. Cibiniensis, Ser. E: Food Technol., 20, 29-38. https://doi.org/10.1515/aucft-2016-0013
Arteaga V.G., Guardia M.A., Muranyi I., Eisner P., and Schweiggert-Weisz U. (2020) Effect of enzymatic hydrolysis on molecular weight distribution, technofunctional properties and sensory perception of pea protein isolates. Innov. Food Sci. Emerg. Technol., 65, 102449. https://doi.org/10.1016/j.ifset.2020.102449
Daliri H., Ahmadi R., Pezeshki A., Hamishehkar H., Mohammadi M., et al. (2021) Quinoa bioactive protein hydrolysate produced by pancreatin enzyme-functional and antioxidant properties. LWT-Food Sci. Technol., 150, 111853. https://doi.org/10.1016/j.lwt.2021.111853
Putra S.N.K.M., Ishak N.H., and Sarbon N.M. (2018) Preparation and characterization of physicochemical properties of golden apple snail (Pomacea canaliculata) protein hydrolysate as affected by different proteases. Biocatal. Agric. Biotechnol., 13, 123-128. https://doi.org/10.1016/j.bcab.2017.12.002
Souza T.S.P.d., Dias F.F.G., Koblitz M.G.B., and Bell J.M.L.N.d.M. (2020) Effects of enzymatic extraction of oil and protein from almond cake on the physicochemical and functional properties of protein extracts. Food Bioprod. Process., 122, 280-290. https://doi.org/10.1016/j.fbp.2020.06.002
Gao J., Tang Z.-S., He S., Powelle W., and Brennan C.S. (2023) The foaming properties of sweet potato protein hydrolysates produced by Alcalase and Ficin. J. Sci. Food Agric., 103, 4157-4163. https://doi.org/10.1002/jsfa.12420
Goto T., Shimamoto S., Ohtsuka A., and Ijiri D. (2021) Analyses of free amino acid and taste sensor traits in egg albumen and yolk revealed potential of value-added eggs in chickens. Anim. Sci. J., 92, e13510. https://doi.org/10.1111/asj.13510
Tang T., Wu N., Tang S., Xiao N., Jiang Y., et al. (2023) Industrial Application of Protein Hydrolysates in Food. J. Agric. Food Chem., 71, 1788−1801. https://doi.org/10.1021/acs.jafc.2c06957
Xu Y., Galanopoulos M., Sismour E., Ren S., Mersha Z., et al. (2020) Effect of enzymatic hydrolysis using endo‑ and exo‑proteases on secondary structure, functional, and antioxidant properties of chickpea protein hydrolysates. J. Food Meas. Charact., 14, 343–352. https://doi.org/10.1007/s11694-019-00296-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Tam Dinh Le Vo, Hoai Duc Le, Anh Thi Hoang Nguyen, Nhi Ngoc Yen Luong, Tran Bao Vo, Van Thi Tuyet Nguyen, Hieu Trung Ma, Vy Thuy Pham, Dzung Nguyen Nam Phan, Linh Vy Truc Nguyen, Linh Thi Thuy Tran, Bao Chi Vo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on any research article in the Mongolian Journal of Chemistry is retained by the author(s).
The authors grant the Mongolian Journal of Chemistry a license to publish the article and identify itself as the original publisher.
Articles in the Mongolian Journal of Chemistry are Open Access articles published under a Creative Commons Attribution 4.0 International License CC BY.
This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.