Pharmacological insights into Ipomoea staphylina: Therapeutic activities and the isolated bioactive metabolic compounds
DOI:
https://doi.org/10.5564/mjc.v25i52.3195Keywords:
Ipomoea staphylina, Biological activities, Plant extract, IsolationAbstract
This review comprehensively explores I. staphylina's traditional uses, diverse applications, and pharmacological activities. Extensively used in traditional medicine, this plant addresses a range of ailments, including stomach disorders, respiratory issues, and rheumatism. Research has highlighted its significant antimicrobial, anti-inflammatory, antioxidant, antidiabetic, anthelmintic, and analgesic properties. Notably, its antiulcer activity highlights its potential as a novel antiulcer agent, while hepatoprotective and nephroprotective effects suggest therapeutic applications in liver and kidney disorders. Studies on its anti-diabetic potential show significant reductions in blood glucose levels and positive impacts on biochemical markers. The plant's anti-mutagenic activity against base-pair mutations expands its potential applications. The review also discusses the isolation and pharmacological applications of pure compounds identified through LC-MS and NMR analyses. This review identifies I. staphylina as a promising source of bioactive compounds with therapeutic potential, emphasizing the need for further research to isolate and characterize its active constituents.
Downloads
60
References
Dias D.A., Urban S., Roessner U. (2012). A historical overview of natural products in drug discovery. Metabolites, 2(2), 303-336. https://doi.org/10.3390/metabo2020303
Dar R.A., Shahnawaz M., Rasoo, S., Qazi P.H. (2017). Natural product medicines: A literature update. J. Phytopharmacol., 6(6), 349-351.
https://doi.org/10.31254/phyto.2017.6608
Capasso R., Izzo A.A., Pinto L., Bifulco T., Vitobello C., et al., (2000). Phytotherapy and quality of herbal medicines. Fitoterapia, 71, S58-S65. https://doi.org/10.1016/S0367-326X(00)00173-8
Calixto J.B. (2000). Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Braz. J. Med. Biol. Res., 33, 179-189. https://doi.org/10.1590/S0100-879X2000000200004
Rizvi S.I., Mishra N. (2013) Traditional Indian medicines used for the management of diabetes mellitus. J. Diabetes Res., 2013(1). https://doi.org/10.1155/2013/712092
Harvey A.L. (2008). Natural products in drug discovery. Drug Discov. Today, 13(19-20), 894-901. https://doi.org/10.1016/j.drudis.2008.07.004
Atanasov A.G., Zotchev S.B., Dirsch V.M., Supuran C.T. (2021). Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov., 20(3), 200-216. https://doi.org/10.1038/s41573-020-00114-z
Balandrin M.F., Kinghorn A.D., Farnsworth N.R. (1993) Plant-derived natural products in drug discovery and development. In: Human Medicinal Agents from Plants. ACS Pubs., 534, 2-12. https://doi.org/10.1021/bk-1993-0534.ch001
Ulrich-Merzenich G., Panek D., Zeitler H., Vetter H., Wagner H. (2010) Drug development from natural products: Exploiting synergistic effects. Indian J. Exp. Biol., 48(3), 208-219.
Muralidharan R., Narasimhan D. (2013) Plants used for topical application from Gingee hills, Tamil Nadu, India. Current Botany, 3(4), 49-52.
Sarvalingam A., Rajendran A., Sivalingam R. (2014) Wild edible plant resources used by the Irulas of the Maruthamalai Hills, Southern Western Ghats, Coimbatore, Tamil Nadu. Indian J. Nat. Prod. Resour., 5(2), 198-201.
Staples G.W. (1996) The identity of Ipomoea staphylina (Convolvulaceae) in Asia. Taiwania, 41(3), 185-196. https://doi.org/10.6165/tai.1996.41.185
Narra P., Kandavara P. (2014) Evaluation of cytotoxic, antimicrobial, and anti-inflammatory properties from the latex of Ipomea staphylina. J. Microbiol. Biotech. Food Sci., 3(5), 350-352. https://office2.jmbfs.org/index.php/JMBFS/article/view/6993.
Reddy D.P., Kota R., Anarthe S.J., Raghavendra M. (2013) Isolation, characterization of phytoconstituents and pharmacological screening of Ipomoea staphylina. Asian J. Pharm. Clin. Res., 6(1), 30-33.
Firdous S.M., Koneri R. (2012) In vivo and in vitro antiinflammatory activity of leaves of Ipomoea staphylina. Int. J. Pharm. Pharm. Sci., 4(5) 339-343.
Kottaimuthu R. (2008) Ethnobotany of the Valaiyans of Karandamalai, Dindigul District, Tamil Nadu, India. Ethnobototanical Leaflets 1, 195-203.
Available at: https://opensiuc.lib.siu.edu/ebl/vol2008/iss1/24
Kumar T.D., Pullaiah T. (1999) Ethno-Medico-Botany of Chenchus of Mahaboobnagar District, Andhra Pradesh. Anc. Sci. Life, 19(1-2), 31.
Shobana P. Devi. Begum, M. Shabana, (2020) Antioxidant and antiperoxidative effects of Ipomoea staphylina in Streptozotocin-induced diabetic rats. Res. J. Agril. Sci., 12(1), 374-379.
Firdous S.M., Koneri R. (2014) Antidiabetic and antioxidant activities of Ipomoea staphylina Leaves in Streptozotocin (STZ) induced diabetic mice. J. PharmaSciTech, 3(2). http://www.pharmascitech.in
Firdous S.M., Singh A. (2016) Effect of Ipomoea staphylina leaves on streptozotocin-nicotinamide induced type-II diabetes in Wistar rats. Asian Pac. J. Health Sci., 3, 30-44. https://doi.org/10.21276/apjhs.2016.3.3.6
Ghosh S., Firdous S.M. (2014) Effect of aqueous extract of Ipomoea staphylina on Indian earthworm. Evaluation, 12, 13.
Banerjee A., Firdous S.M. (2015) Antiulcer activity of hydroalcoholic extract of Ipomoea staphylina plant in rats. Bangladesh J. Pharmacol., 10(3), 652-653. https://doi.org/10.3329/bjp.v10i3.24034.
Bag A.K., Mumtaz S.F. (2013) Hepatoprotective and nephroprotective activity of hydroalcoholic extract of Ipomoea staphylina leaves. Bangladesh J. Pharmacol., 8(3), 263-268. https://doi.org/10.3329/bjp.v8i3.14845.
Jeyadevi R., Ananth D.A., Sivasudha T. (2019) Hepatoprotective and antioxidant activity of Ipomoea staphylina Linn. Clin. Phytosci., 5(1), 1-11.
https://doi.org/10.1186/s40816-019-0112-4
Ghosh S., Firdous S.M. (2014) Evaluation of analgesic activity of hydroalcoholic extract of Ipomoea staphylina. TJPS, 38(2), 57-60. https://doi.org/10.56808/3027-7922.1971
Santhoshkumar T., Rahuman A.A., Bagavan A., Kirthi A.V., Marimuthu S., et al. (2012) Efficacy of adulticidal and larvicidal properties of botanical extracts against Haemaphysalis bispinosa, Hippobosca maculata, and Anopheles subpictus. Parasitol. Res., 111, 1833-1840. https://doi.org/10.1007/s00436-011-2608-9
Banerjee A., Firdous S.M. (2020) In vitro antimutagenic activity of Ipomoea staphylina. Bangladesh J. Pharmacol., 15(1), 41-43.
https://doi.org/10.3329/bjp.v15i1.43446
Villaseñor I.M., Angelada J., Canlas A.P., Echegoyen D. (2002) Bioactivity studies on β‐sitosterol and its glucoside. Phytother. Res., 16(5), 417-421.
https://doi.org/10.1002/ptr.910
Rashed K. (2020) Beta-sitosterol medicinal properties: a review. J. Sci. Innov. Technol., 9, 208-212. 226313318
Ambavade S.D., Misar A.V., Ambavade P.D. (2014) Pharmacological, nutritional, and analytical aspects of β-sitosterol: a review. Orient. Pharm. Exp. Med., 14, 193-211. https://doi.org/10.1007/s13596-014-0151-9
Prakash D., Gupta C., Sharma G. (2012) Importance of phytochemicals in nutraceuticals. J. Chin. Med. Res. Dev., 1(3), 70-78.
Nwozo O.S., Effiong E.M., Aja P.M., Awuchi C.G. (2023) Antioxidant, phytochemical, and therapeutic properties of medicinal plants: A review. Int. J. Food Prop., 26(1), 359-388. https://doi.org/10.1080/10942912.2022.2157425
Luo B., Wen Y., Ye F., Wu Y., Li N., et al., (2023) Bioactive phytochemicals and their potential roles in modulating gut microbiota. J. Agric. Food Res., 12, 100583. https://doi.org/10.1016/j.jafr.2023.100583
Kawatra A., Gupta S., Dhankha, R., Singh P., Gulati P. (2023) Application of phytochemicals in therapeutic, food, flavor, and cosmetic industries. In: Swamy M.K., Kumar A. (eds) Phytochemical Genomics. Springer, Singapore, 85-108. https://doi.org/10.1007/978-981-19-5779-6_4
Luo Y., Zeng Y., Peng J., Zhang K., Wang L., et al., (2023) Phytochemicals for the treatment of metabolic diseases: Evidence from clinical studies. Biomed. Pharmacother, 165, 115274. https://doi.org/10.1016/j.biopha.2023.115274
Padmashree M.S., Ashwathanarayana R., Raja Naika R.B. (2018) Antioxidant, cytotoxic and nutritive properties of Ipomoea staphylina Roem & Schult. plant extracts with preliminary phytochemical and GC-MS analysis. A. J. Pharm. Parmacol., 4(4), 473-92. https://doi.org/10.31024/ajpp.2018.4.4.16
Tucker J.M., Townsend D.M. (2005) Alpha-tocopherol: Roles in prevention and therapy of human disease. Biomed. Pharmacother., 59(7), 380-387.
https://doi.org/10.1016/j.biopha.2005.06.005
Rendle P.M., Kassibawi F., Johnston K.A., Hart J.B., Cameron S.A., et al., (2016) Synthesis and biological activities of d-chiro-inositol analogues with insulin-like actions. Eur. J. Med. Chem., 122, 442-451.
https://doi.org/10.1016/j.ejmech.2016.06.047
Xiong R., Sauvage F., Fraire J.C., Huang C., De Smed S.C., et al., (2023) Photothermal nanomaterial-mediated photoporation. Acc. Chem. Res., 56(6), 631-643.
https://doi.org/10.1021/acs.accounts.2c00770
Zhang L., Gu F.X., Chan J.M., Wang A.Z., Langer R.S., et al., (2007) Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther., 83(5), 761-769. https://doi.org/10.1038/sj.clpt.6100400
Yildiz I., Shukla S., Steinmetz N.F. (2011) Applications of viral nanoparticles in medicine. Curr. Opinion Biotech., 22(6), 901-908.
https://doi.org/10.1016/j.copbio.2011.04.020
Van Rijt S.H., Bein T., Meiners S. (2014) Medical nanoparticles for next generation drug delivery to the lungs. Eur. Respir. J., 44(3), 765-774.
https://doi.org/10.1183/09031936.00212813
Pugazhendhi S. (2020) Synthesis of Ipomoea staphylina plant extract mediated silver nanoparticles. Materials Today: Proceedings, 33, 4626-4629.
https://doi.org/10.1016/j.matpr.2020.08.287
Narayanan L., Suseem S.R., Kamara C. (2024) An investigation into the larvicidal activity of biologically synthesized silver and copper oxide nanoparticles against Mosquito larvae. Chemistry and Biodiversity 21(4), e202301774. https://doi.org/10.1002/cbdv.202301774
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Suseem SR, Lakshmanan Narayanan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on any research article in the Mongolian Journal of Chemistry is retained by the author(s).
The authors grant the Mongolian Journal of Chemistry a license to publish the article and identify itself as the original publisher.
Articles in the Mongolian Journal of Chemistry are Open Access articles published under a Creative Commons Attribution 4.0 International License CC BY.
This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.