Development technology of starter cultures using lactic acid bacteria isolated from fermented Camel milk with cholesterol lowering ability

Authors

  • Sarengaole Key laboratory of Dairy Biotechnology and Engineering, Ministry of Education, China; Inner Mongolia Agricultural University, Inner Mongolia 010018, China https://orcid.org/0000-0003-4870-2629
  • Tsend-Ayush Chuluunbat School of Industrial Technology, Mongolian University of Science and Technology, Ulaanbaatar 14191, Mongolia https://orcid.org/0000-0002-9255-7206
  • Bayinjirigala College of Animal Science, Inner Mongolia Agricultural University, Inner Mongolia 010018, China https://orcid.org/0000-0003-3483-1892
  • Menghebilige Key laboratory of Dairy Biotechnology and Engineering, Ministry of Education, China; Inner Mongolia Agricultural University, Inner Mongolia 010018, China

DOI:

https://doi.org/10.5564/mjc.v23i49.1404

Keywords:

Mongolian fermented Camel milk, Cholesterol lowering, Lactobacillus plantarum, starter cultures

Abstract

The aim of the study is to develop a technology of starter cultures for fermented milk using new strains of lactic acid bacteria isolated from Mongolian traditional fermented camel milk. “Khoormog” samples are collected from Inner Mongolia, China. Totally 230 Lactobacillus strains are isolated and screened by acid-, bile- tolerance, lactose decomposition and acid production ability. The cholesterol lowering abilities and adhesiveness on Caco-2 are evaluated. The top 2 strains are identified as Lactobacillus plantarum. These 2 strains are prepared as the starter cultures in milk fermentation. The development technology of starter cultures is studied.

Downloads

Download data is not yet available.
Abstract
357
PDF 375

Author Biography

Sarengaole, Key laboratory of Dairy Biotechnology and Engineering, Ministry of Education, China; Inner Mongolia Agricultural University, Inner Mongolia 010018, China

School of Industrial Technology, Mongolian University of Science and Technology, Ulaanbaatar 14191, Mongolia

References

Čejka J., Roth W.J., Opanasenko M. (2017). Two-dimensional silica-based inorganic networks. In: Jerry L. Atwood (ed.) Comprehensive supramolecular chemistry II, Elsevier, 475-501. https://doi.org/10.1016/B978-0-12-409547-2.13647-9

Haldar S.K., Tišljar J. (2014). Basic Mineralogy. In: Introduction to mineralogy and petrology. Chapter II, Elsevier, 39-79. https://doi.org/10.1016/B978-0-12-408133-8.00002-X

Moulijn J.A., van Leeuwen P.W.N.M., van Santen R.A. (1993). Catalytic processes in industry. In: Studies in surface science and catalysis. Chapter II, Elsevier, 23-67.

https://doi.org/10.1016/S0167-2991(08)63806-9

Ashutosh Tiwari, Shukla S.K. (2014). Advanced carbon materials and technology. John Wiley & Sons, Inc. 1-514. https://doi.org/10.1002/9781118895399

Fang Y., Guo S., Li D., Zhu C., Ren W., et al. (2012). Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. ACS Nano, 6(1), 400-409. https://doi.org/10.1021/nn2046373

Zhao H., Zhang F., Zhang S., He S., Shen F., et al. (2018). Scalable synthesis of sub-100 nm hollow carbon nanospheres for energy storage applications. Nano Res., 11, 1822-1833. https://doi.org/10.1007/s12274-017-1800-3

Nieto-Márquez A., Romero R., Romero A., Valverde, J.L. (2011). Carbon nanospheres: Synthesis, physicochemical properties and applications. J. Mater. Chem., 21(6), 1664-1672. https://doi.org/10.1039/C0JM01350A

Ciasca G., Papi M., Businaro L., Campi G., Ortolani M., et al. (2016). Recent advances in superhydrophobic surfaces and their relevance to biology and medicine. Bioinspir. Biomim., 11(1). https://doi.org/10.1088/1748-3190/11/1/011001

Aljumaily M.M., Alsaadi M.A., Das R., Abd Hamid S.B., Hashim N.A., et al. (2018). Optimization of the synthesis of superhydrophobic carbon nanomaterials by chemical vapor deposition. Sci. Rep., 8(1). https://doi.org/10.1038/s41598-018-21051-3

Kim T.W., Chung P.W., Slowing I.I., Tsunoda M., Yeung E.S., et al. (2008). Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells. Nano Lett., 8(11), 3724-3727. https://doi.org/10.1021/nl801976m

Ghaemi F., Yunus R., Jassim L., Ahmadian A., Ismail F. (2015). Synthesis of carbon nanotube-carbon nanosphere on the CF surface by CVD. Advanced Mater. Res., 1134, 209-212. https://doi.org/10.4028/www.scientific.net/AMR.1134.209

Kumar A., Kostikov Y., Orberger B., Nessim G.D., Mariotto G. (2018). Natural laterite as a catalyst source for the growth of carbon nanotubes and nanospheres. ACS Appl. Nano Mate., 1(11), 6046-6054. https://doi.org/10.1021/acsanm.8b01117

Miao J.Y., Hwang D.W., Narasimhulu K.V., Lin P.I., Chen Y.T., et al. (2004). Synthesis and properties of carbon nanospheres grown by CVD using Kaolin supported transition metal catalysts. Carbon, 42(4), 813-822. https://doi.org/10.1016/j.carbon.2004.01.053

Poyraz A. ., Dag Ö. (2009). Role of organic and inorganic additives on the assembly of CTAB-P123 and the morphology of mesoporous silica particles. Journal of Physical Chemistry C, 113(43), 18596-18607. https://doi.org/10.1021/jp907303a

Kim M.K., Ki D.H., Na Y.G., Lee H.S., Baek J.S., et al. (2021). Optimization of mesoporous silica nanoparticles through statistical design of experiment and the application for the anticancer drug. Pharmaceutics, 13(2). https://doi.org/10.3390/pharmaceutics13020184

Djowe A.T., Laminsi S., Njopwouo D., Acayanka E., Gaigneaux E.M. (2013). Surface modification of smectite clay induced by non-thermal gliding arc plasma at atmospheric pressure. Plasma Chem. Plasma Process., 33(4), 707-723. https://doi.org/10.1007/s11090-013-9454-8

Maddalena R., Hall C., Hamilton A. (2019). Effect of silica particle size on the formation of calcium silicate hydrate [C-S-H] using thermal analysis. Thermochimica Acta, 672, 142-149. https://doi.org/10.1016/j.tca.2018.09.003

Marsh A., Heath A., Patureau P., Evernden M., Walker P. (2018). Alkali activation behaviour of un-calcined montmorillonite and illite clay minerals. Applied Clay Science, 166, 250-261. https://doi.org/10.1016/j.clay.2018.09.011

Zhuang L., Zhang W., Zhao Y., Shen H., Lin H., Liang J. (2015). Preparation and characterization of Fe3O4 particles with novel nanosheets morphology and magnetochromatic property by a modified solvothermal method. Sci. Rep., 5. https://doi.org/10.1038/srep09320

Pol V.G., Pol S.V., Calderon Moreno J.M., Gedanken A. (2006). High yield one-step synthesis of carbon spheres produced by dissociating individual hydrocarbons at their autogenic pressure at low temperatures. Carbon, 44(15), 3285-3292. https://doi.org/10.1016/j.carbon.2006.06.023

Zhao N., Wang J., Shi C., Liu E., Li J., He C. (2014). Chemical vapor deposition synthesis of carbon nanospheres over Fe-based glassy alloy particles. Journal of Alloys and Compounds, 617, 816-822. https://doi.org/10.1016/j.jallcom.2014.08.072

Hussain N., Alwan S., Alshamsi H., Sahib I. (2020). Green synthesis of S- and N-codoped carbon nanospheres and application as adsorbent of Pb (II) from aqueous solution. International Journal of Chemical Engineering, 2020. https://doi.org/10.1155/2020/9068358

Boufades D., Hammadou S., Mesdour N., Moussiden A., Benmebrouka H., et al. One-step synthesis and characterization of carbon nanospheres via natural gas condensate pyrolysis. Fullerenes, Nanotubes and Carbon Nanostructures, 28(9), 716-723. https://doi.org/10.1080/1536383X.2020.1750383

Azri F.A., Sukor R., Hajian R., Yusof N. A., Bakar F.A., et al. (2017). Modification strategy of screen-printed carbon electrode with functionalized multi-walled carbon nanotube and chitosan matrix for biosensor development. Asian Journal of Chemistry, 29(1), 3136. https://doi.org/10.14233/ajchem.2017.20104

Trykowski G., Biniak S., Stobinski L., Lesiak B. (2010). Preliminary investigations into the purification and functionalization of multiwall carbon nanotubes. 118. In Acta Physica Polonica A, 118(3), 515-518. https://doi.org/10.12693/APhysPolA.118.515

Slobodian P., Riha P., Olejnik R., Cvelbar U., Saha P. (2013). Enhancing effect of KMnO4 oxidation of carbon nanotubes network embedded in elastic polyurethane on overall electro-mechanical properties of composite. Composites Science and Technology, 81, 54-60.

Santangelo S., Messina G., Faggio G., Abdul Rahim S.H., Milone C. (2012). Effect of sulphuric-nitric acid mixture composition on surface chemistry and structural evolution of liquid-phase oxidised carbon nanotubes. Journal of Raman Spectroscopy, 43(10), 1432-1442. https://doi.org/10.1002/jrs.4097

Ciofani G., Raffa V., Pensabene V., Menciassi A., Dario P. (2009). Dispersion of multi-walled carbon nanotubes in aqueous pluronic F127 solutions for biological applications. Fullerenes Nanotubes and Carbon Nanostructures, 17(1), 11-25. https://doi.org/10.1080/15363830802515840

Gu J., Su S., Li Y., He Q., Shi J. (2011). Hydrophilic mesoporous carbon nanoparticles as carriers for sustained release of hydrophobic anti-cancer drugs. Chemical Communications, 47(7), 2101-2103.

https://doi.org/10.1039/C0CC04598E

Singhal S., Dixit S., Shukla A.K. (2019). Structural analysis of carbon nanospheres synthesized by CVD: an investigation of surface charges and its effect on the stability of carbon nanostructures. Applied Physics A: Materials Science and Processing, 125(80). https://doi.org/10.1007/s00339-018-2372-0

Hoc Thang N., Sy Khang D., Duy Hai T., Thi Nga D., Dinh Tuan P. (2021). Methylene blue adsorption mechanism of activated carbon synthesised from cashew nut shells. RSC Advances, 11(43), 26563-26570. https://doi.org/10.1039/D1RA04672A

Hammadou née Mesdour S., Boufades D., Bousak H., Moussiden A., Benmabrouka H., et.al. (2022). Potential application of carbon nanospheres as adsorbent for the simultaneous desulfurization and demetallization of transportations fuels. Fullerenes Nanotubes and Carbon Nanostructures, 30(4), 419-427. https://doi.org/10.1080/1536383X.2021.1947809

Downloads

Additional Files

Published

2022-05-30

How to Cite

Bayinjirigala, S., Chuluunbat, T.-A., Bayin, J., & Menghe, B. (2022). Development technology of starter cultures using lactic acid bacteria isolated from fermented Camel milk with cholesterol lowering ability. Mongolian Journal of Chemistry, 23(49), 38–50. https://doi.org/10.5564/mjc.v23i49.1404

Issue

Section

Articles