Structural and electronic properties of the spinel Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>

Authors

  • Sarantuya Lkhagvajav Institute of Physics and Technology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia https://orcid.org/0000-0001-7508-5326
  • Namsrai Tsogbadrakh Department of Physics, National University of Mongolia, Ulaanbaatar 14201, Mongolia
  • Enkhjargal Enkhbayar Institute of Physics and Technology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
  • Sevjidsuren Galsan Institute of Physics and Technology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
  • Pagvajav Altantsog Institute of Physics and Technology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia

DOI:

https://doi.org/10.5564/mjc.v20i46.1236

Keywords:

Spinel, Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>, DFT, GGA U, X-ray diffraction, UV-visible

Abstract

In this study, the structure and electronic properties of the spinel compound Li4Ti5O12 (LTO) are investigated both theoretical and experimental methods. The experimental studies of structural and electronic properties were performed by X-ray diffraction and UV-visible spectroscopy. The first principles calculations allowed to establish the relationship between the structure and electronic properties. The spinel type structure of LTO is refined by the Rietveld analysis using the X-ray diffraction (XRD). The band gap of LTO was determined to be 3.55 eV using the UV-visible absorption spectra. The Density functional theory (DFT) augmented without and with the Hubbard U correction (GGA and GGA +U+J0) is used to elucidate the electronic structure of LTO. We have performed systematic studies of the first principles calculations based on the GGA and GGA+U for the crystal structure and electronic properties of spinel LTO. We propose that a Hubbard U correction improves the DFT results.

Downloads

Download data is not yet available.
Abstract
1447
PDF
1598

References

Ohzuku T., Ueda A., Yamamoto N. (1995) Zero-Strain Insertion Material of Li[Li1/3Ti5/3]O4 for Rechargeable Lithium Cells. J. Electrochem. Soc., 142, 1431-1435. https://doi.org/10.1149/1.2048592

FehrK.T., Holzapfel M., Laumann A., Schmidbauer E.(2010) DC and AC conductivity of Li4/3Ti5/3O4 spinel.Solid State Ionics., 181,1111-1118. https://doi.org/10.1016/j.ssi.2010.05.026

Li J., Jin Y., Zhang X., Yang H.(2007) Microwave solid-state synthesis of spinel Li4Ti5O12 nanocrystallites as anode material for lithium-ion batteries. Solid State Ionics., 178, 1590-1594. https://doi.org/10.1016/j.ssi.2007.10.012

Shi Y., Wen L., Li F., Cheng H.M.(2011) Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion batteries. J. Power Sources., 196, 8610-8617. https://doi.org/10.1016/j.jpowsour.2011.06.002

Deschanvers A., Raveau B., Sekkal Z.(1971)Mise en evidence et etude cristallographique d'une nouvelle solution solide de type spinelle Li1+xTi2-xO4(0≤x≤0.33) . Mater. Res. Bull., 6,699-704. https://doi.org/10.1016/0025-5408(71)90103-6

SunX., RadovanovicP.V., CuiB., (2015) Advances in spinel Li4Ti5O12 anode materials for lithium-ion batteries. New J. Chem., 39, 38-63. https://doi.org/10.1039/C4NJ01390E

Scharner S., Weppner W., Schmid-Beurmann P. (1999)Evidence of Two-Phase Formation upon Lithium Insertion into the Li1.33Ti1.67O4 Spinel. J. Electrochem. Soc., 146,857-861. https://doi.org/10.1149/1.1391692

OuyangC.Y., ZhongZ.Y., LeiM.S., (2007)Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel. Electrochem. Commun., 9, 1107-1112. https://doi.org/10.1016/j.elecom.2007.01.013

Sandhya C.P., John B., Gouri C. (2014) Lithium titanate as anode material for lithium-ion cells: a review.Ionics., 20, 601-620. https://doi.org/10.1007/s11581-014-1113-4

GuoX.F., WangC.Y., Chen M.M., et al. (2012) Carbon coating of Li4Ti5O12 using amphiphilic carbonaceous material for improvement of lithium-ion battery performance. Power Sources., 214, 107-112. https://doi.org/10.1016/j.jpowsour.2012.04.097

LinY.S., TsaiM.C., DuhJ.G. (2012)Self-assembled synthesis of nanoflower-like Li4Ti5O12 for ultrahigh rate lithium-ion batteries. J. Power Sources., 214, 314-318. https://doi.org/10.1016/j.jpowsour.2012.04.072

Liu D.T., Ouyang C.Y., Shu J. et al. (2006) Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12. Phys. Status Solidi B., 243, 1835-1841. https://doi.org/10.1002/pssb.200541404

Lippens P.E., Womes M., Kubiak P.,et al. (2004) Electronic structure of the spinel Li4Ti5O12 studied by ab initio calculations and X-ray absorption spectroscopy. Solid State Sci., 6, 161-166. https://doi.org/10.1016/j.solidstatesciences.2003.12.001

Zhong Z.Y., Ouyang C.Y., Shi S., Lei M. S. (2008)Ab initio studies on Li4+xTi5O12 compounds as anode materials for lithium-ion batteries.ChemPhysChem., 9, 2104-2108. https://doi.org/10.1002/cphc.200800333

Samin A., Kurth M., Cao L. (2015)Ab initio study of radiation effects on the Li4Ti5O12 electrode used in lithium-ion batteries. AIP Advances., 5, 047110. https://doi.org/10.1063/1.4917308

Julien C. M., Massot M., Zaghib K. (2004)Structural studies of Li4/3Me5/3O4 (Me = Ti, Mn) electrode materials: local structure and electrochemical aspects. J. Power Sources., 136, 72-79. https://doi.org/10.1016/j.jpowsour.2004.05.001

Laumann A., Boysen H., Bremholm M.,et al. (2011)Lithium Migration at High Temperatures in Li4Ti5O12 Studied by Neutron Diffraction. J. Chem. Mater., 23, 2753-2759. https://doi.org/10.1021/cm103332y

ColinJ.F., GodboleV., NovákP. (2010)In situ neutron diffraction study of Li insertion in Li4Ti5O12. J. Electrochem Comm., 12, 804-807. https://doi.org/10.1016/j.elecom.2010.03.038

Kitta M., Akita T., Maeda Y.,Kohyama M. (2012) Study of surface reaction of spinel Li4Ti5O12 during the first lithium insertion and extraction processes using atomic force microscopy and analytical transmission electron microscopy.Langmuir., 28, 12384-12392. https://doi.org/10.1021/la301946h

Gao J., Jiang C.,Ying J.,Wan C. (2006) Preparation and characterization of high-density spherical Li4Ti5O12 anode material for lithium secondary batteries.J. Power Sources., 155, 364-367. https://doi.org/10.1016/j.jpowsour.2005.04.008

Wang G.X., Bradhurst D.H., Dou S.X., Liu H.K. (1999) Spinel Li[Li1/3Ti5/3]O4 as an anode material for lithium ion batteries.J. Power Sources., 83, 156-161. https://doi.org/10.1016/S0378-7753(99)00290-6

Aldon L., Kubiak P., Womes M.,et al. (2004)Chemical and Electrochemical Li-Insertion into the Li4Ti5O12 Spinel. Chem. Mater., 16, 5721-5725. https://doi.org/10.1021/cm0488837

Zhang.Q., Liu.Y., Lu.H., Tang.D., Ouyang.C., Zhang.L. (2016) Ce3+ doped Li4Ti5O12 with CeO2 surface modification by a sol-gel method for high-performance lithium ion batteries. Electrochemica Acta, 189, 147-157. https://doi.org/10.1016/j.electacta.2015.12.103

Zhang.Q., Lu.H., Zhong.H., Yan.X., Ouyang.C., Zhang.L. (2015) W6+& Br- codoped Li4Ti5O12 anode with super rate performance for Li-ion batteries. J. Mater. Chem. A, 3, 13706-13716. https://doi.org/10.1039/C5TA02784E

Sarantuya L., Sevjidsuren G., Altantsog P., Tsogbadrakh N. (2018) Synthesis, Structure and Electronic Properties of Li4Ti5O12 Anode Material for Lithium ion Batteries.J. Solid State Phenom., 271, 9-17. https://doi.org/10.4028/www.scientific.net/SSP.271.9

Rodriguez-Carvajal J., Laboratoire Léon Brillouin (2014) France.

Rodríguez-Carvajal J. (1993)Recent advances in magnetic structure determination by neutron powder diffraction. J. Phys. B Phys. Condens. Matter., 192, 55-69. https://doi.org/10.1016/0921-4526(93)90108-I

Rodríguez-Carvajal J.(2001) Recent Developments of the Program FULLPROF, in Commission Powder Diffraction. Newsletter., 26, 12-19.

Thompson P., Cox D.E.,Hastings J.B. (1987) Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3.J. Appl. Cryst., 20, 79-83. https://doi.org/10.1107/S0021889887087090

Perdew J.P., Burke K., Ernzerhof M. (1996) Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 77, 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865

Hohenberg P., Kohn, W. (1964) Inhomogeneous Electron Gas. Phys. Rev., 136, B864-871. https://doi.org/10.1103/PhysRev.136.B864

Kohn W., Sham L. J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev., 140, A1133-1138. https://doi.org/10.1103/PhysRev.140.A1133

Giannozzi P., Baroni S., Bonini N., et al. (2017) Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter., 29, 465901. https://doi.org/10.1088/1361-648X/aa8f79

Vanderbilt D. (1990) Soft self-consistnent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B., 41, 7892-7895. https://doi.org/10.1103/PhysRevB.41.7892

Monkhorst H.J., Pack J.D. (1976) Special points for brillouin-zone integrations. Phys. Rev. B., 13, 5188-5192. https://doi.org/10.1103/PhysRevB.13.5188

Blochl P.E., Jepsen O., Andersen O.K. (1994) Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B., 49, 16223-16233. https://doi.org/10.1103/PhysRevB.49.16223

Payne M.C., Teter M.P., Allan D. C., et al. (1992)Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys., 64, 1045-1097. https://doi.org/10.1103/RevModPhys.64.1045

Cococcioni M.,de Gironcoli S. (2005) Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B., 71, 035105. https://doi.org/10.1103/PhysRevB.71.035105

Himmetoglu B., Wentzcovich R.M., Cococcioni M. (2011) First-principles study of electronic and structural properties of CuO. Phys. Rev. B., 84, 115108. https://doi.org/10.1103/PhysRevB.84.115108

Ge H., Tian H., Song H.,et al. (2015) Study on the energy band structure and photoelectrochemical performances of spinel Li4Ti5O12.Mater. Res.Bull.,61, 459-462. https://doi.org/10.1016/j.materresbull.2014.10.064

KimC., NorbergN.S., AlexanderC.T.,et al. (2013)Correction: Mechanism of Phase Propagation During LIthiation in Carbon-Free Li4Ti5O12 Battery Electrodes.Adv. Funct. Mater., 23, 1214. https://doi.org/10.1002/adfm.201390002

Downloads

Published

2019-12-27

How to Cite

Lkhagvajav, S., Tsogbadrakh, N., Enkhbayar, E., Galsan, S., & Altantsog, P. (2019). Structural and electronic properties of the spinel Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>. Mongolian Journal of Chemistry, 20(46), 7–12. https://doi.org/10.5564/mjc.v20i46.1236

Issue

Section

Articles