Structural and electronic properties of the spinel Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>
DOI:
https://doi.org/10.5564/mjc.v20i46.1236Keywords:
Spinel, Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>, DFT, GGA U, X-ray diffraction, UV-visibleAbstract
In this study, the structure and electronic properties of the spinel compound Li4Ti5O12 (LTO) are investigated both theoretical and experimental methods. The experimental studies of structural and electronic properties were performed by X-ray diffraction and UV-visible spectroscopy. The first principles calculations allowed to establish the relationship between the structure and electronic properties. The spinel type structure of LTO is refined by the Rietveld analysis using the X-ray diffraction (XRD). The band gap of LTO was determined to be 3.55 eV using the UV-visible absorption spectra. The Density functional theory (DFT) augmented without and with the Hubbard U correction (GGA and GGA +U+J0) is used to elucidate the electronic structure of LTO. We have performed systematic studies of the first principles calculations based on the GGA and GGA+U for the crystal structure and electronic properties of spinel LTO. We propose that a Hubbard U correction improves the DFT results.
Downloads
1447
References
Ohzuku T., Ueda A., Yamamoto N. (1995) Zero-Strain Insertion Material of Li[Li1/3Ti5/3]O4 for Rechargeable Lithium Cells. J. Electrochem. Soc., 142, 1431-1435. https://doi.org/10.1149/1.2048592
FehrK.T., Holzapfel M., Laumann A., Schmidbauer E.(2010) DC and AC conductivity of Li4/3Ti5/3O4 spinel.Solid State Ionics., 181,1111-1118. https://doi.org/10.1016/j.ssi.2010.05.026
Li J., Jin Y., Zhang X., Yang H.(2007) Microwave solid-state synthesis of spinel Li4Ti5O12 nanocrystallites as anode material for lithium-ion batteries. Solid State Ionics., 178, 1590-1594. https://doi.org/10.1016/j.ssi.2007.10.012
Shi Y., Wen L., Li F., Cheng H.M.(2011) Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion batteries. J. Power Sources., 196, 8610-8617. https://doi.org/10.1016/j.jpowsour.2011.06.002
Deschanvers A., Raveau B., Sekkal Z.(1971)Mise en evidence et etude cristallographique d'une nouvelle solution solide de type spinelle Li1+xTi2-xO4(0≤x≤0.33) . Mater. Res. Bull., 6,699-704. https://doi.org/10.1016/0025-5408(71)90103-6
SunX., RadovanovicP.V., CuiB., (2015) Advances in spinel Li4Ti5O12 anode materials for lithium-ion batteries. New J. Chem., 39, 38-63. https://doi.org/10.1039/C4NJ01390E
Scharner S., Weppner W., Schmid-Beurmann P. (1999)Evidence of Two-Phase Formation upon Lithium Insertion into the Li1.33Ti1.67O4 Spinel. J. Electrochem. Soc., 146,857-861. https://doi.org/10.1149/1.1391692
OuyangC.Y., ZhongZ.Y., LeiM.S., (2007)Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel. Electrochem. Commun., 9, 1107-1112. https://doi.org/10.1016/j.elecom.2007.01.013
Sandhya C.P., John B., Gouri C. (2014) Lithium titanate as anode material for lithium-ion cells: a review.Ionics., 20, 601-620. https://doi.org/10.1007/s11581-014-1113-4
GuoX.F., WangC.Y., Chen M.M., et al. (2012) Carbon coating of Li4Ti5O12 using amphiphilic carbonaceous material for improvement of lithium-ion battery performance. Power Sources., 214, 107-112. https://doi.org/10.1016/j.jpowsour.2012.04.097
LinY.S., TsaiM.C., DuhJ.G. (2012)Self-assembled synthesis of nanoflower-like Li4Ti5O12 for ultrahigh rate lithium-ion batteries. J. Power Sources., 214, 314-318. https://doi.org/10.1016/j.jpowsour.2012.04.072
Liu D.T., Ouyang C.Y., Shu J. et al. (2006) Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12. Phys. Status Solidi B., 243, 1835-1841. https://doi.org/10.1002/pssb.200541404
Lippens P.E., Womes M., Kubiak P.,et al. (2004) Electronic structure of the spinel Li4Ti5O12 studied by ab initio calculations and X-ray absorption spectroscopy. Solid State Sci., 6, 161-166. https://doi.org/10.1016/j.solidstatesciences.2003.12.001
Zhong Z.Y., Ouyang C.Y., Shi S., Lei M. S. (2008)Ab initio studies on Li4+xTi5O12 compounds as anode materials for lithium-ion batteries.ChemPhysChem., 9, 2104-2108. https://doi.org/10.1002/cphc.200800333
Samin A., Kurth M., Cao L. (2015)Ab initio study of radiation effects on the Li4Ti5O12 electrode used in lithium-ion batteries. AIP Advances., 5, 047110. https://doi.org/10.1063/1.4917308
Julien C. M., Massot M., Zaghib K. (2004)Structural studies of Li4/3Me5/3O4 (Me = Ti, Mn) electrode materials: local structure and electrochemical aspects. J. Power Sources., 136, 72-79. https://doi.org/10.1016/j.jpowsour.2004.05.001
Laumann A., Boysen H., Bremholm M.,et al. (2011)Lithium Migration at High Temperatures in Li4Ti5O12 Studied by Neutron Diffraction. J. Chem. Mater., 23, 2753-2759. https://doi.org/10.1021/cm103332y
ColinJ.F., GodboleV., NovákP. (2010)In situ neutron diffraction study of Li insertion in Li4Ti5O12. J. Electrochem Comm., 12, 804-807. https://doi.org/10.1016/j.elecom.2010.03.038
Kitta M., Akita T., Maeda Y.,Kohyama M. (2012) Study of surface reaction of spinel Li4Ti5O12 during the first lithium insertion and extraction processes using atomic force microscopy and analytical transmission electron microscopy.Langmuir., 28, 12384-12392. https://doi.org/10.1021/la301946h
Gao J., Jiang C.,Ying J.,Wan C. (2006) Preparation and characterization of high-density spherical Li4Ti5O12 anode material for lithium secondary batteries.J. Power Sources., 155, 364-367. https://doi.org/10.1016/j.jpowsour.2005.04.008
Wang G.X., Bradhurst D.H., Dou S.X., Liu H.K. (1999) Spinel Li[Li1/3Ti5/3]O4 as an anode material for lithium ion batteries.J. Power Sources., 83, 156-161. https://doi.org/10.1016/S0378-7753(99)00290-6
Aldon L., Kubiak P., Womes M.,et al. (2004)Chemical and Electrochemical Li-Insertion into the Li4Ti5O12 Spinel. Chem. Mater., 16, 5721-5725. https://doi.org/10.1021/cm0488837
Zhang.Q., Liu.Y., Lu.H., Tang.D., Ouyang.C., Zhang.L. (2016) Ce3+ doped Li4Ti5O12 with CeO2 surface modification by a sol-gel method for high-performance lithium ion batteries. Electrochemica Acta, 189, 147-157. https://doi.org/10.1016/j.electacta.2015.12.103
Zhang.Q., Lu.H., Zhong.H., Yan.X., Ouyang.C., Zhang.L. (2015) W6+& Br- codoped Li4Ti5O12 anode with super rate performance for Li-ion batteries. J. Mater. Chem. A, 3, 13706-13716. https://doi.org/10.1039/C5TA02784E
Sarantuya L., Sevjidsuren G., Altantsog P., Tsogbadrakh N. (2018) Synthesis, Structure and Electronic Properties of Li4Ti5O12 Anode Material for Lithium ion Batteries.J. Solid State Phenom., 271, 9-17. https://doi.org/10.4028/www.scientific.net/SSP.271.9
Rodriguez-Carvajal J., Laboratoire Léon Brillouin (2014) France.
Rodríguez-Carvajal J. (1993)Recent advances in magnetic structure determination by neutron powder diffraction. J. Phys. B Phys. Condens. Matter., 192, 55-69. https://doi.org/10.1016/0921-4526(93)90108-I
Rodríguez-Carvajal J.(2001) Recent Developments of the Program FULLPROF, in Commission Powder Diffraction. Newsletter., 26, 12-19.
Thompson P., Cox D.E.,Hastings J.B. (1987) Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3.J. Appl. Cryst., 20, 79-83. https://doi.org/10.1107/S0021889887087090
Perdew J.P., Burke K., Ernzerhof M. (1996) Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 77, 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
Hohenberg P., Kohn, W. (1964) Inhomogeneous Electron Gas. Phys. Rev., 136, B864-871. https://doi.org/10.1103/PhysRev.136.B864
Kohn W., Sham L. J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev., 140, A1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
Giannozzi P., Baroni S., Bonini N., et al. (2017) Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter., 29, 465901. https://doi.org/10.1088/1361-648X/aa8f79
Vanderbilt D. (1990) Soft self-consistnent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B., 41, 7892-7895. https://doi.org/10.1103/PhysRevB.41.7892
Monkhorst H.J., Pack J.D. (1976) Special points for brillouin-zone integrations. Phys. Rev. B., 13, 5188-5192. https://doi.org/10.1103/PhysRevB.13.5188
Blochl P.E., Jepsen O., Andersen O.K. (1994) Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B., 49, 16223-16233. https://doi.org/10.1103/PhysRevB.49.16223
Payne M.C., Teter M.P., Allan D. C., et al. (1992)Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys., 64, 1045-1097. https://doi.org/10.1103/RevModPhys.64.1045
Cococcioni M.,de Gironcoli S. (2005) Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B., 71, 035105. https://doi.org/10.1103/PhysRevB.71.035105
Himmetoglu B., Wentzcovich R.M., Cococcioni M. (2011) First-principles study of electronic and structural properties of CuO. Phys. Rev. B., 84, 115108. https://doi.org/10.1103/PhysRevB.84.115108
Ge H., Tian H., Song H.,et al. (2015) Study on the energy band structure and photoelectrochemical performances of spinel Li4Ti5O12.Mater. Res.Bull.,61, 459-462. https://doi.org/10.1016/j.materresbull.2014.10.064
KimC., NorbergN.S., AlexanderC.T.,et al. (2013)Correction: Mechanism of Phase Propagation During LIthiation in Carbon-Free Li4Ti5O12 Battery Electrodes.Adv. Funct. Mater., 23, 1214. https://doi.org/10.1002/adfm.201390002
Downloads
Published
How to Cite
Issue
Section
License
Copyright on any research article in the Mongolian Journal of Chemistry is retained by the author(s).
The authors grant the Mongolian Journal of Chemistry a license to publish the article and identify itself as the original publisher.
Articles in the Mongolian Journal of Chemistry are Open Access articles published under a Creative Commons Attribution 4.0 International License CC BY.
This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.