Phytochemicals in leaves of Cotoneaster mongolica, their antioxidative, and acetylcholinesterase inhibitory activity

Authors

DOI:

https://doi.org/10.5564/mjc.v20i46.1235

Keywords:

Cotoneaster mongolica, prunasin, hyperoside, DPPH scavenging, AChE inhibition

Abstract

The phytochemicals in the leaves of Cotoneaster mongolica Pojark, as well as their antioxidant and acetylcholinesterase
(AChE) inhibitory activity were studied. The methanol extract of the leaves showed acetylcholinesterase inhibitory activity
(IC50, 32.61 ± 0.51 μg/mL). The n-butanol fraction of this extract exhibited DPPH radical scavenging (IC50, 55.70 ± 0.15 μg/mL) and AChE inhibitory activity (IC50, 72.50 ± 0.60 μg/mL). From the n-butanol fraction quercetin (1), hyperoside (2),
kaempferol-5-O-β-D-glucopyranoside (3), sissotrin (4), ursolic acid (5), corosolic acid (6), euscaphic acid (7), prunasin (8),
(2R)-mandeloyl-β-D-glucopyranose (9), (Z)-3-hexenyl-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside (10), benzyl-
O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside (11) and arbutin (12) have been isolated and identified. Hyperoside,
one of the major constituents among the isolated compounds, was active in both tested assays. Flavonol derivatives could provide the activity of this plant species.

Downloads

Download data is not yet available.
Abstract
1317
PDF
1267

References

Grubov V.I., Key to the vascular plants of Mongolia, Ulaanbaatar, (2008) 170.

Ligaa U., Davaasuren B., Ninjil N., Medicinal plants of Mongolia used in western and eastern medicine, JKC printing, Ulaanbaatar, (2006) 483-484.

Ligaa U., Methods of the usage of Mongolian medicinal plants and complex formulations in the Mongolian traditional medicine, Ulaanbaatar, (1996) 271-272.

Holzer V.M.D, Lower-Nedza A.D., Nandintsetseg M., Batkhuu J., Brantner A.H., (2013) Antioxidant constituents of Cotoneaster melanocarpus Lodd. Antioxidants, 2, 265-272 https://doi.org/10.3390/antiox2040265

Esmaeili S., Ghiaee A., Naghibi F., Mosaddegh, (2015) Antiplasmodial activity and cytotoxicity of plants used in traditional medicine of Iran for the treatment of fever. Iran. J. Pharm. Res., 14, 103-107.

Azadbakht M., Pishva N., Mohammadi-Samani S., Alinejad F., (2005) The effect of purgative manna on the infant jaundice. Iran. J. Pharm. Sci., 1, 95-100.

Jerzak E., Cotoneaster species cultivated in Poland (in Polish); Officina Botanica: Krakov, Poland, (2007).

Slabaugh P.E., Shaw N.L., Cotoneaster Medik. The Woody Plant Seed Manual; Bonner F.T., Karrfalt R.P. Eds.; U.S. Department of Agriculture, Forest Service: Washington DC, USA, (2008) 442-446.

Chang Ch-S., Jeon J-I., (2003) Leaf flavonoids in Cotoneaster wilsonii (Rosaceae) from the island Ulleong-do, Korea. Biochem. Syst. Ecol, 31, 171-179 https://doi.org/10.1016/S0305-1978(02)00064-9

Stahl E., Kaltenbach U. in Zukher und Derivative in Duennschicht-Chromatographie, ein Laboratorium Handbuch, Ed. Stahl E., Springer-Verlag, Berlin, (1962) 473.

Mensor L.L., Menezes F.S., Leitao G.G., Reis A.S., Santos T.C., Coude C.S.,Leitao S.G., (2001) Screening of Brazilian plant extracts for antioxidant activity by use of DPPH free radical method. Phytother. Res., 15, 127-130 https://doi.org/10.1002/ptr.687

Ellman G.L., Courtney K.D., Feater-Stone Andres V.Jr.R.M., (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 7, 88-95 https://doi.org/10.1016/0006-2952(61)90145-9

Kicel A., Michel P., Owczarek A., Marchelak A., Zyzelewicz D., Budryn G., Oracz J., Olszewska M.A., (2016) Phenolic profile and antioxidant potential of leaves from selected Cotoneaster Medik. species. Molecules, 21,(6), 688 https://doi.org/10.3390/molecules21060688

Sokkar N., El-Gindi O., Sayed S., Mohamed Sh., Ali Z., Alfishawy I., (2013) Antioxidant, anticancer and hepatoprotective activities of Cotoneaster horizontalis Decne extract as well as -tocopherol and amygdalin production from in vitro culture. Acta Physiol. Plant, 35, 2421-2428 https://doi.org/10.1007/s11738-013-1276-z

Zengin G., Uysal A., Gunes E., Aktumsek A., (2014) Survey of phytochemical and biological effects of three extracts from a wild plant (Cotoneaster nummularia Fisch. et Mey): A potential source for functions; food ingredients and drug formulations, 9(11), e113527 https://doi.org/10.1371/journal.pone.0113527

Uysal A., Zengin G., Mollica A., Gunes E., Locatelli M., Yilmaz T., Aktumsek A., (2016) Chemical and biological insights on Cotoneaster integerrimus: A new (-) -epicatechin source for food and medicinal applications. Phytomed., 23, 979-988 https://doi.org/10.1016/j.phymed.2016.06.011

Odontuya G. (2016) Anti-oxidative, acetylcholinesterase and pancreatic lipase inhibitory activities of compounds from Dasiphora fruticosa, Myricaria alopecuroides and Sedum hybridum. Mon. J Chem., 17(43), 42-49. https://doi.org/10.5564/mjc.v17i43.746

Markham K.R, Ternai B., Stanley R., Geiger H., Mabry T.J., (1978) Carbon-13 NMR studies of flavonoids - III, Tetrahedron, 34, 1389-1397 https://doi.org/10.1016/0040-4020(78)88336-7

Harborne J.B., The flavonoids, Advances in research since 1986. Chapman and Hall: London; (1994) 448-496.

Yim S-H., Lee Y-J., Park K-D., Lee I-S., Shin B-A., Jung D-W., Williams D.R., Kim H-J., (2015) Phenolic constituents from the flowers of Hamemelis japonica Sieb. et Zucc. Nat. Prod. Sci., 21(3), 162-169.

Fuchino H., Nakamura H., Wada H., Hakamatsuka T., Tanaka N., (1997) 5-O-Glucosylated kaempferols from the fern Dryopteris dickinsii. Nat. Med., 51(6), 537-538.

Vitor R.F., Mota-Filipe H., Teixeira G., Borges C., Rodrigues A.I., Teixeira A., Paul A., (2004) Flavonoids of an extract of Pterospartum tridentatum showing endotheilial protection against oxidative injury. J. Ethnopharmacol., 93, 363-370 https://doi.org/10.1016/j.jep.2004.04.003

Seebacher W., Simic N., Weis R., Saf R., Kunert O., (2003) Complete assignments of 1H and 13C NMR resonances of oleanolic acid, 18-oleanolic acid, ursolic acid and their 11-oxo derivatives. Magn. Reson. Chem., 41, 636-638 https://doi.org/10.1002/mrc.1214

Woo K-W., Han J-Y., Choi S-U., Kim K-H., Lee K-R., (2014) Triterpenes from Perilla frutescens var. acuta and their cytotoxic activity. Nat. Prod. Sci., 20(2), 71-75.

Seigler D.S., Pauli G.F., Nahrstedt A., Leen R., (2002) Cyanogenic allosides and glucosides from Passiflora edulis and Carica papaya. Phytochem., 60, 873-882 https://doi.org/10.1016/S0031-9422(02)00170-X

D'Abrosca B., DellaGreca M., Fiorentino A., Monaco P., Previtera L., Simonet A.M., Zarelli A., (2001) Potential allelochemicals from Sambucus nigra. Phytochem., 58, 1073-1081 https://doi.org/10.1016/S0031-9422(01)00401-0

Yuda M., Ohtani K., Mizutani K., Kasai R., Tanaka O., Jia M-R., Ling Yi-R., Pu X-F., Saruwatari Y-I., (1990) Neolignan glycosides from roots of Codonopsis tangshen. Phytochem. 29(6), 1989-1993 https://doi.org/10.1016/0031-9422(90)85053-I

Hamerski L., Bomm M.D., Silva D.H.S., Young M.C.M., Furlan M., Eberlin M.N., Castro-Gamboa I., Cavalheiro A.J., Bonzani V. da S., (2005) Phenylpropanoid glucosides from leaves of Coussarea hydrangeifolia (Rubiaceae). Phytochem., 66, 1927-1932 https://doi.org/10.1016/j.phytochem.2005.06.019

Klick S., Herrmann K., (1988) Glucosides and glucose esters of hydrobenzoic acids in plants. Phytochem., 27(7), 2177-2180 https://doi.org/10.1016/0031-9422(88)80121-3

Nahrstedt A., (1973) Cyanogenesis in Cotoneaster-Arten. Phytochem., 12, 1539-1542 https://doi.org/10.1016/0031-9422(73)80364-4

Palme E., Bilia A.R., Morelli I., (1996) Flavonols and isoflavones from Cotoneaster simonsii. Phytochem., 42, 3, 903-905 https://doi.org/10.1016/0031-9422(95)00023-2

Praeventio N.G.O., (2014) Dependence of DPPH radical scavenging activity of dietary flavonoids quercetin on reaction environment, Med. Chem., 14, 494-504 https://doi.org/10.2174/1389557514666140622204037

Jung M., Park M., (2007) Acetylcholinesterase inhibition by flavonoids from Agrimonia pilosa, Molecules, 12, 2130-2139 https://doi.org/10.3390/12092130

Orhan I., Kartal M., Tosun F., Sener B., (2007) Screening of various phenolic acids and flavonoid derivatives for their anticholinesterase potential, Z. Naturforsch.,C 62, 829-832 https://doi.org/10.1515/znc-2007-11-1210

Vila-Nova N.S., Morais S.M., Falcao M.J., Bevilaqua C.M., Rondon F., Wilson M.E., Vieira I.G., Andrade H.F., (2012) Leishmanicidal and cholinesterase inhibiting activities of phenolic compounds of Dimorphandra gardeniana and Platymiscium floribundum, native plants from Caatinga biome, Pesqui. Vet. Bras., 32, 1164-1168. https://doi.org/10.1590/S0100-736X2012001100015

Zhao Y., Dou J., Wu T., Aisa H.A., (2013) Investigating the antioxidant and acetylcholinesterase inhibition activities of Gossypium herbaceam. Molecules, 18, 951-962 https://doi.org/10.3390/molecules18010951

Park J-Y., Han X., Piao M-J., Oh M-Ch., Fernando P.M.D.J., Kang K-A., Ryu Y-S., Jung U., Kim I-G., Hyun J-W., (2016) Hyperoside induces endogenous antioxidant system to alleviate oxidative stress. J. Cancer Prev., 21(1), 41-47 https://doi.org/10.15430/JCP.2016.21.1.41

Raza A., Xu X., Sub H., Tang J., Ouyang Z., (2017) Pharmacological activities and pharmacokinetic study of hyperoside: A short review. Trop. J. Pharm. Res.,16(2), 483-489 https://doi.org/10.4314/tjpr.v16i2.30

Khan H., Marya, Amin S., Kamal M.A., Patel S., (2018) Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects, Biomed. Pharmacother., 101, 860-870 https://doi.org/10.1016/j.biopha.2018.03.007

Downloads

Published

2019-12-27

How to Cite

Gendaram, O. (2019). Phytochemicals in leaves of Cotoneaster mongolica, their antioxidative, and acetylcholinesterase inhibitory activity. Mongolian Journal of Chemistry, 20(46), 1–6. https://doi.org/10.5564/mjc.v20i46.1235

Issue

Section

Articles