Insight into in-situ modification of white carbon black with surfactant/silane coupling agent via surface grafting and its performance
DOI:
https://doi.org/10.5564/mgs.v30i60.3604Keywords:
Vanadium-extraction residue, Modified white carbon black, Surface modification, Rubber, High mechanical propertiesAbstract
Hydrophobic and highly dispersed modified white carbon black particles were prepared using surfactant sodium dodecyl sulfate as a modifier and the vanadium-extraction residue as raw material. This study investigated the effects of modification temperature, pH value, aging time and dosage of modifier. In order to reflect the advantages of surfactant sodium dodecyl sulfate modification, the silane coupling agent γ-methacryloxypropyl trimethoxysilane was used to compare with it. The modified white carbon black prepared by in-situ grafting method with sodium dodecyl sulfate and γ-methacryloxypropyl trimethoxysilane was compared. X-ray diffraction and fourier transform infrared spectrometer results indicate that the modified product has an amorphous structure and the modifier exists on the surface of white carbon black in the form of chemical grafting. The modified product is added as fillers to rubber and the mechanical properties of rubber show that the white carbon black modified by sodium dodecyl sulfate has a lower modulus of elasticity, a higher maximum tensile stress and the strain at yield. The results of scanning electron microscope images of rubber and particle size of modified white carbon black demonstrate that the fine-grained modified white carbon black particles are more likely to form a network structure with the rubber to enhance the mechanical properties of the rubber.
Downloads
20
References
Amin, N., Khattak, S., Noor, S., Ferroze, I. 2016. Synthesis and characterization of silica from bottom ash of sugar industry. Journal of Cleaner Production, vol. 117, p. 207-211. https://doi.org/10.1016/j.jclepro.2016.01.042
Bareiro, O., Santos, L.A. 2014. Tetraethylorthosilicate (TEOS) applied in the surface modification of hydroxyapatite to develop polydimethylsiloxane/hydroxyapatite composites. Colloids and Surface B-Biointerfaces, vol. 115, p. 400-405. https://doi.org/10.1016/j.colsurfb.2013.12.027
Bhagat, S., Rao, A. 2006. Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid–base) sol-gel process. Applied Surface Science, vol. 252(12), p. 4289-4297. https://doi.org/10.1016/j.apsusc.2005.07.006
Chen, L., Wang, Y.J., Zia, U.D., Fei, P., Jin, W.S., Xiong, H.G., Wang, Z.J. 2017. Enhancing the performance of starch-based wood adhesive by silane coupling agent (KH570). International Journal of Biological Macromolecules, vol. 104(Part A), p. 137-144. https://doi.org/10.1016/j.ijbiomac.2017.05.182
Chen, X.Y., Huang, L.M., Li, Q.Z. 1997. Hydrothermal transformation and characterization of porous silica templated by surfactants. The Journal of Physical Chemistry B, vol. 101(42), p. 8460-8467. https://doi.org/10.1021/jp9705333
Cui, J.L., Sun, H.L., Luo, Z.L., Sun, J.C., Wen, Z.S. 2015. Preparation of low surface area SiO2 microsphere from wheat husk ash with a facile precipitation process. Materials Letters, vol. 156, p. 42-45. https://doi.org/10.1016/j.matlet.2015.04.134
Fujino, K., Nishimoto, Y., Tokumasu, N., Maeda, K. 1992. Surface modification of base materials for TEOS/O3 atmospheric pressure chemical vapor deposition. Journal of The Electrochemical Society, vol. 139(6), p. 1690-1692. https://doi.org/10.1149/1.2069478
Garbassi, F., Balducci, L., Chiurlo, P., Deiana, L. 1995. A study of surface modification of silica using XPS, DRIFT and NMR. Applied Surface Science, vol. 84(2), p. 145-151. https://doi.org/10.1016/0169-4332(94)00469-2
Gauthier, C., Reynaud, E., Vassoille, R., Ladouce-Stelandre, L. 2004. Analysis of the non-linear viscoelastic behaviour of silica filled styrene butadiene rubber. Polymer, vol. 45(8), p. 2761-2771. https://doi.org/10.1016/j.polymer.2003.12.081
He, X., Li, J., Chen, M., Jin, Y., Wang, Y., Li, J. 2019. Resistance of deliquescence and caking to enhance the effective utilization of potassium nitrate: A novel surface modification method by SDS. Powder Technology, vol. 356, p. 500-507. https://doi.org/10.1016/j.powtec.2019.08.035
Itzhaik-Alkotzer, Y., Grzegorzewski, F., Belausov, E., Zelinger, E., Mechrez, G. 2019. In situ interfacial surface modification of hydrophilic silica nanoparticles by two organosilanes leading to stable Pickering emulsions. RSC Advances, vol. 9(68), p. 39611-39621. https://doi.org/10.1039/c9ra07597f
Jesionowski, T., Zurawska, J., Krysztafkiewicz, A., Pokora, M., Waszak, D., Tylus, W. 2003. Physicochemical and morphological properties of hydrated silicas precipitated following alkoxysilane surface modification. Applied Surface Science, vol. 205(1), p. 212-224. https://doi.org/10.1016/S0169-4332(02)01090-5
Kim, J.M., Chang, S.M., Kong, S.M., Kim, K.S., Kim, J., Kim, W.S. 2009. Control of hydroxyl group content in silica particle synthesized by the sol-precipitation process. Ceramics International, vol. 35(3), p. 1015-1019. https://doi.org/10.1016/j.ceramint.2008.04.011
Landarani-Isfahani, A., Mohammadpoor-Baltork, I., Mirkhani, V., Khosropour, A.R., Moghadam, M., Tangestaninejad, S. 2014. Pd Nanoparticles Immobilized on Nanosilica Triazine Dendritic Polymer: A Reusable Catalyst for the Synthesis of Mono-, Di-, and Trialkynylaromatics by Sonogashira Cross-Coupling in Water. European Journal of Organic Chemistry, vol. 2014(25), p. 5603-5609. https://doi.org/10.1002/ejoc.201402503
Lin, L., Zhai, S.R., Xiao, Z.Y., Liu, N., Song, Y., Zhai, B., An, Q.D. 2012. Cooperative effect of polyethylene glycol and lignin on SiO2 microsphere production from rice husks. Bioresource Technology, vol. 125, p. 172-174. https://doi.org/10.1016/j.biortech.2012.08.119
Ma, X.K., Lee, N.H., Oh, H.J., Kim, J.W., Rhee, C.K., Park, K.S., Kim, S.J. 2010. Surface modification and characterization of highly dispersed silica nanoparticles by a cationic surfactant. Colloids and Surface A-Physicochemical and Engineering Aspects, vol. 358(1), p. 172-176. https://doi.org/10.1016/j.colsurfa.2010.01.051
Marczak, J., Kargol, M., Psarski, M., Celichowski, G. 2016. Modification of epoxy resin, silicon and glass surfaces with alkyl- or fluoroalkylsilanes for hydrophobic properties. Applied Surface Science, vol. 380, p. 91-100. https://doi.org/10.1016/j.apsusc.2016.02.071
Murniati, R., Rahmayanti, H. D, Utami, F., Cifriadi, A., Iskandar, F., Abdullah, M. 2020. Effects of magnetically modified natural zeolite addition on the crosslink density, mechanical, morphological, and damping properties of SIR 20 natural rubber reinforced with nanosilica compounds. Journal of Polymer Research, vol. 27(2), p. 1-13. https://doi.org/10.1007/s10965-020-2013-0
Ren, H.B., Zhu, J.Y., Bi, Y.T., Xu, Y.W., Zhang, L. 2016. One-step fabrication of transparent hydrophobic silica aerogels via in situ surface modification in drying process. Journal of Sol-Gel Science and Technology, vol. 80(3), p. 635-641. https://doi.org/10.1007/s10971-016-4146-5
Sáenz. A., Montero, M.L., Mondragón, G., Rodríguez-Lugo, V., Castaño, V.M. 2003. Effect of pH on the precipitation of hydroxyapatite on silica gels. Materials Research Innovations, vol. 7(2), p. 68-73. https://doi.org/10.1080/14328917.2003.11784764
Salavati-Niasari, M., Javidi, J., Dadkhah, M. 2013. Ball milling synthesis of silica nanoparticle from rice husk ash for drug delivery application. Combinatorial Chemistry & High Throughput Screening, vol. 16(6), p. 458-462. https://doi.org/10.2174/1386207311316060006
Salimi, D., Khorasani, S.N., Abadchi, M.R., Veshare, S.J. 2009. Optimization of physico-mechanical properties of silica-filled NR/SBR compounds. Advanced in Polymer Technology, vol. 28(4), p. 224-232. https://doi.org/10.1002/adv.20169
Sarkawi, S.S., Dierkes, W.K., Noordermeer, J.W.M. 2014. Elucidation of filler-to-filler and filler-to-rubber interactions in silica-reinforced natural rubber by TEM network visualization. European Polymer Journal, vol. 54, p. 118-127. https://doi.org/10.1016/j.eurpolymj.2014.02.015
Sarkawi, S.S., Dierkes, W.K., Noordermeer, J.W.M. 2013. The influence of non-rubber constituents on performance of silica reinforced natural rubber compounds. European Polymer Journal, vol. 49(10), p. 3199-3209. https://doi.org/10.1016/j.eurpolymj.2013.06.022
Seliem, M.K., Komarneni, S., Parette, R., Katsuki, H., Cannon, F.S., Shahien, M.G., Khalil, A.A., El-Gaid, I.M.A. 2013. Composites of MCM-41 silica with rice husk: Hydrothermal synthesis, characterisation and application for perchlorate separation. Materials Research Innovations, vol. 14(5), p. 351-354. https://doi.org/10.1179/143307510X12820854749312
Shahnani, M., Mohebbi, M., Mehdi, A., Ghassempou, A., About-Enein, H.Y. 2018. Silica microspheres from rice husk: A good opportunity for chromatography stationary phase. Industrial Crops and Products, vol. 121, p. 236-240. https://doi.org/10.1016/j.indcrop.2018.05.023
Song, Y.Z., Yu, J.H., Dan, D., Song, L.X., Jiang, N. 2014. Effect of silica particles modified by in-situ and ex-situ methods on the reinforcement of silicone rubber. Materials and Design, vol. 64, p. 687-693. https://doi.org/10.1016/j.matdes.2014.08.051
Tai, Y.L., Qian, J.S., Zhang, Y.C., Huang, J.D. 2008. Study of surface modification of nano-SiO2 with macromolecular coupling agent (LMPB-g-MAH). Chemical Engineering Journal, vol. 141(1-3), p. 354-361. https://doi.org/10.1016/j.cej.2008.03.012
Wang, J.B, Du, P., Zhou, Z.H., Xu, D.Y., Xie, N., Cheng, X. 2019. Effect of nano-silica on hydration, microstructure of alkali-activated slag. Construction and Building Materials, vol. 220, p. 110-118. https://doi.org/10.1016/j.conbuildmat.2019.05.158
Wang, Y.D., Zhang, Y.P., Liang, G., Zhao, X. 2020a. Fabrication and properties of amorphous silica particles by fluorination of zircon using ammonium bifluoride. Journal of Fluorine Chemistry, vol. 232, p. 109467. https://doi.org/10.1016/j.jfluchem.2020.109467
Wang, S., Bao, S.X., Zhang, Y.M., Yuan, Y.Z. 2020b. Optimization of silicon leaching for white carbon black preparation from vanadium-extraction residue using response surface methodology. Revista De Chimie, vol. 71(8), p. 206-219. https://doi.org/10.37358/RC.20.8.8293
Yu, K.Y., Liang, Y., Ma, G.X., Yang, L., Wang, T.J. 2019. Coupling of synthesis and modification to produce hydrophobic or functionalized nano-silica particles. Colloids and Surfaces A-Physicochemical and Engineering Aspects, vol. 574, p. 122-130. https://doi.org/10.1016/j.colsurfa.2019.04.077
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Shenxu Bao, Bo Chen, Shun Wang

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on any research article in the Mongolian Geoscientist is retained by the author(s).
The authors grant the Mongolian Geoscientist a license to publish the article and identify itself as the original publisher.
Articles in the Mongolian Geoscientist are Open Access articles published under a Creative Commons Attribution 4.0 International License CC BY.
This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.