Insight into in-situ modification of white carbon black with surfactant/silane coupling agent via surface grafting and its performance

Authors

DOI:

https://doi.org/10.5564/mgs.v30i60.3604

Keywords:

Vanadium-extraction residue, Modified white carbon black, Surface modification, Rubber, High mechanical properties

Abstract

Hydrophobic and highly dispersed modified white carbon black particles were prepared using surfactant sodium dodecyl sulfate as a modifier and the vanadium-extraction residue as raw material. This study investigated the effects of modification temperature, pH value, aging time and dosage of modifier. In order to reflect the advantages of surfactant sodium dodecyl sulfate modification, the silane coupling agent γ-methacryloxypropyl trimethoxysilane was used to compare with it. The modified white carbon black prepared by in-situ grafting method with sodium dodecyl sulfate and γ-methacryloxypropyl trimethoxysilane was compared. X-ray diffraction and fourier transform infrared spectrometer results indicate that the modified product has an amorphous structure and the modifier exists on the surface of white carbon black in the form of chemical grafting. The modified product is added as fillers to rubber and the mechanical properties of rubber show that the white carbon black modified by sodium dodecyl sulfate has a lower modulus of elasticity, a higher maximum tensile stress and the strain at yield. The results of scanning electron microscope images of rubber and particle size of modified white carbon black demonstrate that the fine-grained modified white carbon black particles are more likely to form a network structure with the rubber to enhance the mechanical properties of the rubber.

Downloads

Abstract
20
PDF
10

Author Biography

Bo Chen, Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan 430070, PR China

School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China;
Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan 430070, PR China

References

Amin, N., Khattak, S., Noor, S., Ferroze, I. 2016. Synthesis and characterization of silica from bottom ash of sugar industry. Journal of Cleaner Production, vol. 117, p. 207-211. https://doi.org/10.1016/j.jclepro.2016.01.042

Bareiro, O., Santos, L.A. 2014. Tetraethylorthosilicate (TEOS) applied in the surface modification of hydroxyapatite to develop polydimethylsiloxane/hydroxyapatite composites. Colloids and Surface B-Biointerfaces, vol. 115, p. 400-405. https://doi.org/10.1016/j.colsurfb.2013.12.027

Bhagat, S., Rao, A. 2006. Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid–base) sol-gel process. Applied Surface Science, vol. 252(12), p. 4289-4297. https://doi.org/10.1016/j.apsusc.2005.07.006

Chen, L., Wang, Y.J., Zia, U.D., Fei, P., Jin, W.S., Xiong, H.G., Wang, Z.J. 2017. Enhancing the performance of starch-based wood adhesive by silane coupling agent (KH570). International Journal of Biological Macromolecules, vol. 104(Part A), p. 137-144. https://doi.org/10.1016/j.ijbiomac.2017.05.182

Chen, X.Y., Huang, L.M., Li, Q.Z. 1997. Hydrothermal transformation and characterization of porous silica templated by surfactants. The Journal of Physical Chemistry B, vol. 101(42), p. 8460-8467. https://doi.org/10.1021/jp9705333

Cui, J.L., Sun, H.L., Luo, Z.L., Sun, J.C., Wen, Z.S. 2015. Preparation of low surface area SiO2 microsphere from wheat husk ash with a facile precipitation process. Materials Letters, vol. 156, p. 42-45. https://doi.org/10.1016/j.matlet.2015.04.134

Fujino, K., Nishimoto, Y., Tokumasu, N., Maeda, K. 1992. Surface modification of base materials for TEOS/O3 atmospheric pressure chemical vapor deposition. Journal of The Electrochemical Society, vol. 139(6), p. 1690-1692. https://doi.org/10.1149/1.2069478

Garbassi, F., Balducci, L., Chiurlo, P., Deiana, L. 1995. A study of surface modification of silica using XPS, DRIFT and NMR. Applied Surface Science, vol. 84(2), p. 145-151. https://doi.org/10.1016/0169-4332(94)00469-2

Gauthier, C., Reynaud, E., Vassoille, R., Ladouce-Stelandre, L. 2004. Analysis of the non-linear viscoelastic behaviour of silica filled styrene butadiene rubber. Polymer, vol. 45(8), p. 2761-2771. https://doi.org/10.1016/j.polymer.2003.12.081

He, X., Li, J., Chen, M., Jin, Y., Wang, Y., Li, J. 2019. Resistance of deliquescence and caking to enhance the effective utilization of potassium nitrate: A novel surface modification method by SDS. Powder Technology, vol. 356, p. 500-507. https://doi.org/10.1016/j.powtec.2019.08.035

Itzhaik-Alkotzer, Y., Grzegorzewski, F., Belausov, E., Zelinger, E., Mechrez, G. 2019. In situ interfacial surface modification of hydrophilic silica nanoparticles by two organosilanes leading to stable Pickering emulsions. RSC Advances, vol. 9(68), p. 39611-39621. https://doi.org/10.1039/c9ra07597f

Jesionowski, T., Zurawska, J., Krysztafkiewicz, A., Pokora, M., Waszak, D., Tylus, W. 2003. Physicochemical and morphological properties of hydrated silicas precipitated following alkoxysilane surface modification. Applied Surface Science, vol. 205(1), p. 212-224. https://doi.org/10.1016/S0169-4332(02)01090-5

Kim, J.M., Chang, S.M., Kong, S.M., Kim, K.S., Kim, J., Kim, W.S. 2009. Control of hydroxyl group content in silica particle synthesized by the sol-precipitation process. Ceramics International, vol. 35(3), p. 1015-1019. https://doi.org/10.1016/j.ceramint.2008.04.011

Landarani-Isfahani, A., Mohammadpoor-Baltork, I., Mirkhani, V., Khosropour, A.R., Moghadam, M., Tangestaninejad, S. 2014. Pd Nanoparticles Immobilized on Nanosilica Triazine Dendritic Polymer: A Reusable Catalyst for the Synthesis of Mono-, Di-, and Trialkynylaromatics by Sonogashira Cross-Coupling in Water. European Journal of Organic Chemistry, vol. 2014(25), p. 5603-5609. https://doi.org/10.1002/ejoc.201402503

Lin, L., Zhai, S.R., Xiao, Z.Y., Liu, N., Song, Y., Zhai, B., An, Q.D. 2012. Cooperative effect of polyethylene glycol and lignin on SiO2 microsphere production from rice husks. Bioresource Technology, vol. 125, p. 172-174. https://doi.org/10.1016/j.biortech.2012.08.119

Ma, X.K., Lee, N.H., Oh, H.J., Kim, J.W., Rhee, C.K., Park, K.S., Kim, S.J. 2010. Surface modification and characterization of highly dispersed silica nanoparticles by a cationic surfactant. Colloids and Surface A-Physicochemical and Engineering Aspects, vol. 358(1), p. 172-176. https://doi.org/10.1016/j.colsurfa.2010.01.051

Marczak, J., Kargol, M., Psarski, M., Celichowski, G. 2016. Modification of epoxy resin, silicon and glass surfaces with alkyl- or fluoroalkylsilanes for hydrophobic properties. Applied Surface Science, vol. 380, p. 91-100. https://doi.org/10.1016/j.apsusc.2016.02.071

Murniati, R., Rahmayanti, H. D, Utami, F., Cifriadi, A., Iskandar, F., Abdullah, M. 2020. Effects of magnetically modified natural zeolite addition on the crosslink density, mechanical, morphological, and damping properties of SIR 20 natural rubber reinforced with nanosilica compounds. Journal of Polymer Research, vol. 27(2), p. 1-13. https://doi.org/10.1007/s10965-020-2013-0

Ren, H.B., Zhu, J.Y., Bi, Y.T., Xu, Y.W., Zhang, L. 2016. One-step fabrication of transparent hydrophobic silica aerogels via in situ surface modification in drying process. Journal of Sol-Gel Science and Technology, vol. 80(3), p. 635-641. https://doi.org/10.1007/s10971-016-4146-5

Sáenz. A., Montero, M.L., Mondragón, G., Rodríguez-Lugo, V., Castaño, V.M. 2003. Effect of pH on the precipitation of hydroxyapatite on silica gels. Materials Research Innovations, vol. 7(2), p. 68-73. https://doi.org/10.1080/14328917.2003.11784764

Salavati-Niasari, M., Javidi, J., Dadkhah, M. 2013. Ball milling synthesis of silica nanoparticle from rice husk ash for drug delivery application. Combinatorial Chemistry & High Throughput Screening, vol. 16(6), p. 458-462. https://doi.org/10.2174/1386207311316060006

Salimi, D., Khorasani, S.N., Abadchi, M.R., Veshare, S.J. 2009. Optimization of physico-mechanical properties of silica-filled NR/SBR compounds. Advanced in Polymer Technology, vol. 28(4), p. 224-232. https://doi.org/10.1002/adv.20169

Sarkawi, S.S., Dierkes, W.K., Noordermeer, J.W.M. 2014. Elucidation of filler-to-filler and filler-to-rubber interactions in silica-reinforced natural rubber by TEM network visualization. European Polymer Journal, vol. 54, p. 118-127. https://doi.org/10.1016/j.eurpolymj.2014.02.015

Sarkawi, S.S., Dierkes, W.K., Noordermeer, J.W.M. 2013. The influence of non-rubber constituents on performance of silica reinforced natural rubber compounds. European Polymer Journal, vol. 49(10), p. 3199-3209. https://doi.org/10.1016/j.eurpolymj.2013.06.022

Seliem, M.K., Komarneni, S., Parette, R., Katsuki, H., Cannon, F.S., Shahien, M.G., Khalil, A.A., El-Gaid, I.M.A. 2013. Composites of MCM-41 silica with rice husk: Hydrothermal synthesis, characterisation and application for perchlorate separation. Materials Research Innovations, vol. 14(5), p. 351-354. https://doi.org/10.1179/143307510X12820854749312

Shahnani, M., Mohebbi, M., Mehdi, A., Ghassempou, A., About-Enein, H.Y. 2018. Silica microspheres from rice husk: A good opportunity for chromatography stationary phase. Industrial Crops and Products, vol. 121, p. 236-240. https://doi.org/10.1016/j.indcrop.2018.05.023

Song, Y.Z., Yu, J.H., Dan, D., Song, L.X., Jiang, N. 2014. Effect of silica particles modified by in-situ and ex-situ methods on the reinforcement of silicone rubber. Materials and Design, vol. 64, p. 687-693. https://doi.org/10.1016/j.matdes.2014.08.051

Tai, Y.L., Qian, J.S., Zhang, Y.C., Huang, J.D. 2008. Study of surface modification of nano-SiO2 with macromolecular coupling agent (LMPB-g-MAH). Chemical Engineering Journal, vol. 141(1-3), p. 354-361. https://doi.org/10.1016/j.cej.2008.03.012

Wang, J.B, Du, P., Zhou, Z.H., Xu, D.Y., Xie, N., Cheng, X. 2019. Effect of nano-silica on hydration, microstructure of alkali-activated slag. Construction and Building Materials, vol. 220, p. 110-118. https://doi.org/10.1016/j.conbuildmat.2019.05.158

Wang, Y.D., Zhang, Y.P., Liang, G., Zhao, X. 2020a. Fabrication and properties of amorphous silica particles by fluorination of zircon using ammonium bifluoride. Journal of Fluorine Chemistry, vol. 232, p. 109467. https://doi.org/10.1016/j.jfluchem.2020.109467

Wang, S., Bao, S.X., Zhang, Y.M., Yuan, Y.Z. 2020b. Optimization of silicon leaching for white carbon black preparation from vanadium-extraction residue using response surface methodology. Revista De Chimie, vol. 71(8), p. 206-219. https://doi.org/10.37358/RC.20.8.8293

Yu, K.Y., Liang, Y., Ma, G.X., Yang, L., Wang, T.J. 2019. Coupling of synthesis and modification to produce hydrophobic or functionalized nano-silica particles. Colloids and Surfaces A-Physicochemical and Engineering Aspects, vol. 574, p. 122-130. https://doi.org/10.1016/j.colsurfa.2019.04.077

Downloads

Published

2025-03-28

How to Cite

Bao, S., Chen, B., & Wang, S. (2025). Insight into in-situ modification of white carbon black with surfactant/silane coupling agent via surface grafting and its performance. Mongolian Geoscientist, 30(60), 36–45. https://doi.org/10.5564/mgs.v30i60.3604

Issue

Section

Articles