Petro-chemical characterization and depositional setting of a late Permian high ash coal deposit, Central Mongolia

Authors

DOI:

https://doi.org/10.5564/mgs.v29i58.3448

Keywords:

Mongol-Transbaikalian Seaway, coal measures, coal quality, facies analysis, plant-arthropod interactions

Abstract

Pan global Permian coal measures are unique in the evolution of the Earth, not matched in any period before or since. Middle and late Permian coal-bearing strata are widely distributed in Mongolia. In particular, a large concentration of transtensive coal-bearing sub-basins is located in southern Mongolia, some of which are well documented. However, the late Permian coal measures developed along the shores of the Mongol-Transbaikalian Seaway in central Mongolia, the focus of this contribution, has received very limited attention. This study focuses on the c. 420 m thick coal-bearing middle part of a c. 2,600 m thick Permo-Triassic succession in the Bayanjargalan district. The study draws on data from 38 drillholes, 3 km of trenches, mapping, petrological analysis of sandstone samples, analysis of macroflora, fauna and trace fossils, 82 coal quality samples as well as washability and ash XRD analysis from a 3t coal bulk sample. The unstable and wedge-shaped architecture of the coal seams strongly suggest a syn-tectonic influence on their development. Paleoclimatic indicators suggest the peat mire ecosystem developed during relatively cold - temperate climatic conditions. Peat-forming plants such as Cordaites, Rufloria and Koretrophyllites probably benefited from moist air currents along the seaway. Plant-arthropod interactions are reported from two sites, in particular DT228 and DT246 oviposition lesions, the latter being almost twice the size of a previous report from North America. Results from 82 proximate analyses returned consistent very high ash yields of 46.95% (db) and 43.45% (adb) from the 3t bulk sample, which are unusual for Permian coals in Mongolia.

Downloads

Download data is not yet available.
Abstract
53
PDF
49

References

Bann, K.L., Fielding, C.R. 2004. An integrated ichnological and sedimentological comparison of non-deltaic shoreface and subaqueous delta deposits in Permian reservoir units of Australia. Geological Society, London, Special Publications, vol. 228(1), p. 273-310. https://doi.org/10.1144/GSL.SP.2004.228.01.13

Biakov, A.S, Goryacheva, N.A., Davydovb, V.I., Vedernikova, I.L. 2013. The First Finds of Glendonite in Permian Deposits of the North Okhotsk Region, Northeastern Asia. Geology, Doklady Akademii Nauk, vol. 451(3), p. 299-302. https://doi.org/10.1134/S1028334X13070210

Brand, U., Posenato, R., Came, R.E., Affek, H., Angiolini, L., Azmy, K., Farabegoli, E. 2012. The end-Permian mass extinction: a rapid volcanic CO2 and CH4-climatic catastrophe. Chemical Geology, vol. 322-323, p. 121-144. https://doi.org/10.1016/j.chemgeo.2012.06.015

Bridge, J.S. 1993. Description and interpretation of fluvial deposits: a critical perspective. Sedimentology, vol. 40(4), p. 801-810. https://doi.org/10.1111/j.1365-3091.1993.tb01361.x

Burgess, S.D., Bowring, S., Shen, S.Z. 2014. High-precision timeline for Earth's most severe extinction. PNAS, Earth, Atmospheric, and Planetary Sciences, vol. 111(9), p. 3316-3321. https://doi.org/10.1073/pnas.1317692111

Bussio, J.P., Roberts, J.R. 2016. A large-scale investigation into changes in coal quality caused by dolerite dykes in Secunda, South Africa-implications for the use of proximate analysis on a working mine. Journal of African Earth Sciences, vol. 117, p. 401-409. https://doi.org/10.1016/j.jafrearsci.2016.01.019

Cai, Y.F., Zhang, H., Feng, Z., Gou, X.D., Byambajav, U. Zhang, Y.C., Yuan, D.X., Qie, W.K., Xu, H.P., Cao, C.Q., Yarinphil, A., Shen, S.Z. 2022. A newconifer stem, Ductoagathoxylon tsaaganensis, from the Upper Permian of the South Gobi Basin, Mongolia and its palaeoclimatic and palaeoecological implications. Review of Palaeobotany and Palynology, vol. 304, 104719. https://doi.org/10.1016/j.revpalbo.2022.104719

Clifton, H.E. 1973. Pebble segregation and bed lenticularity in wave-worked versus alluvial gravel. Sedimentology, vol. 20(2), p. 173-187. https://doi.org/10.1111/j.1365-3091.1973.tb02043.x

Clifton H.E. 2003. Supply, segregation, succession, and significance of shallow marine conglomeratic deposits. Bulletin of Canadian Petroleum Geology, vol. 51(4), p. 370-388. https://doi.org/10.2113/51.4.370

Demberelsuren, B., Jargal, L., Munkhtsengel, B., Lkhagva-Ochir, S., Ganzorig, R., Tsolmon, A., Enkhbat, C., Turbat, E., Tuvshinbayar, E., Tugsjargal, A. 2023. Coal facies of the Middle Permian Baruunnaran deposit, South Mongolia. Mongolian Geoscientist, vol. 28(57), p. 71-91. https://doi.org/10.5564/mgs.v28i57.3236

Demberelsuren, B., Jargal, L., Munkhtsengel, B. 2021. The coal facies interpretations in the Baruunnaran coal deposit, Southern Mongolia. School of Geology and Mining Engineering, MUST, Geology, vol. 36, p. 120-137.

De Vleeschouwer, D., Leather, D., Claeys, P. 2015. Ripple marks indicate Mid-Devonian paleo-wind directions in the Orcadian Basin (Orkney Isles, Scotland). Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 426, p. 68-74. https://doi.org/10.1016/j.palaeo.2015.03.001

Dickins, J.M. 1999. Mid-Permian (Kubergandian - Murgabian) bivalves from the Khuff Formation, Oman: implications for world events and correlation. Rivista Italiana di Paleontologiae Stratigrafia, vol. 105(1), p. 23-36. https://doi.org/10.13130/2039-4942/5364

Dickinson, W.R. 1985. Interpreting Provenance Relations from Detrital Modes of Sandstones. In: Zuffa, G.C. (Ed.) Provenance of Arenites, NATO ASI Series, vol. 148, p. 333-361. https://doi.org/10.1007/978-94-017-2809-6_15

Diessel, C.F.K. 1992. Coal-bearing Depositional Systems. Springer-Verlag, Berlin, 721 p. https://doi.org/10.1007/978-3-642-75668-9

Durante, M.V. 1976. The Paleobotanical Basis for Stratigraphy of the Carboniferous and Permian of Mongolia. Proceedings of the Joint Soviet-Mongolian Geological Expedition, vol. 19, Moscow, Nauka.

Erdenetsogt, B.O., Lee, I., Bat-Erdene, D., Jargal, L. 2009. Mongolian coal-bearing basins: Geological settings, coal characteristics, distribution, and resources. International Journal of Coal Geology, vol. 80(2), p. 87-104. https://doi.org/10.1016/j.coal.2009.08.002

Erkhembaatar, H., Dorjsuren, B., Myagmarsuren, A. 1995. Geological Mapping Report 4825f.

Erwin, D.H. 1993. The Great Paleozoic Crisis. Columbia University Press, New York.

Erwin, D.H. 1994. The Permo-Triassic extinction. Nature, vol. 367, p. 231-236. https://doi.org/10.1038/367231a0

Fan, D., Shan, X., Makeen, Y.M. He, W., Su, S., Wang, Y., Yi, J., Hao, G., Zhao, Y. 2021. Response of a continental fault basin to the global OAE1a during the Aptian: Hongmiaozi Basin, Northeast China. Scientific Reports, vol. 11, 7229. https://doi.org/10.1038/s41598-021-86733-x

Feng, Z., Wang, J., Zhou, W.M., Wan, M.L., Pšenička, J. 2021. Plant-insect interactions in the early Permian Wuda Tuff Flora, North China. Review of Palaeobotany and Palynology, vol. 294, 104269. https://doi.org/10.1016/j.revpalbo.2020.104269

Ferm, J.C., Staub, J.R. 1984. Depositional controls of mineable coal bodies. In: Rahmani, R.A., Flores, R.M. (eds.) Sedimentology of Coal and Coal-Bearing Sequences. International Association of Sedimentologists, Special Publication, vol. 7, p. 275-289. https://doi.org/10.1002/9781444303797.ch15

Fielding, C.R., Frank, T.D., Birgenheier, L.P. 2023. A revised, late Palaeozoic glacial time-space framework for eastern Australia, and comparisons with other regions and events. Earth-Science Reviews, vol. 236, 104263. https://doi.org/10.1016/j.earscirev.2022.104263

Fielding, C. R., Frank, T.D., Savatic, K., Mays, C., McLoughlin, S., Vajda, V., Nicoll, R.S. 2022. Environmental change in the late Permian of Queensland, NE Australia: The warmup to the end-Permian Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 594, 110936. https://doi.org/10.1016/j.palaeo.2022.110936

Hansen, H.J., Lojen, S., Toft, P., Dolenec, T., Jinan, T., Michaelsen, P., Sarkar, A. 2000. Magnetic susceptibility and organic carbon isotopes of sediments across some marine and terrestrial Permo-Triassic boundaries. Developments in Palaeontology and Stratigraphy, vol. 18, p. 271-289. https://doi.org/10.1016/S0920-5446(00)80016-3

Hart, B.S., Plint, A.G. 1989. Gravelly shoreface deposits: a comparison of modern and ancient facies sequences. Sedimentology, vol. 36(4), p. 551-557. https://doi.org/10.1111/j.1365-3091.1989.tb02085.x

Hart, B.S., Plint, A.G. 2003. Stratigraphy and sedimentology of shoreface and fluvial conglomerates: insights from the Cardium Formation in NW Alberta and adjacent British Columbia. Bulletin of Canadian Petroleum Geology, vol. 51(4), p. 437-464. https://doi.org/10.2113/51.4.437

Hayashi, K.L., Fujisawa, H., Holland, H.D. Ohmoto, H. 1997. Geochemistry of ⁓1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochemica et Cosmochimica Acta, vol. 61(19), p. 4115-4137. https://doi.org/10.1016/S0016-7037(97)00214-7

Hayward, J.J. Hayward, B.W. 1995. Fossil forests preserved in volcanic ash and lava at Ihumatao and Takapuna, Auckland. Tane, vol. 35, p. 127-142.

Huang, C. Tong, J., Hinnov, L., Chen, Z.Q. 2011. Did the great dying of life take 700 k.y.? Evidence from global astronomical correlation of the Permian-Triassic boundary interval. Geology, vol. 39(8), p. 779-782. https://doi.org/10.1130/G32126.1

Jargal, L., Kuznetsova, A. A., Tserensodnom, P., Erdembat, L. 1990, Petrographic character of coals from major coal seam of Tavan Tolgoi deposit. In: Geology and Mineral deposits of Mongolian People's Republic, Nedra, Moscow, p. 158-163 (in Russian).

Johnson, D.P. 1984. Development of Permian fluvial coal measures, Goonyella, Australia. In: Rahmani R.A., Flores, R.M. (eds.) Sedimentology of Coal and Coal‐Bearing Sequences, Special Publication, vol. 7, p. 149-162. https://doi.org/10.1002/9781444303797.ch8

Johnson, C.L., Amory, J.A., Zinniker, D., Lamb, M.A., Graham, S.A., Affolter, M., Badarch, G. 2007. Sedimentary response to arc-continent collision, Permian, southern Mongolia. In: Draut, A., Clift, P., Scholl, D. (eds.) Formation and Applications of the Sedimentary Record in Arc Collision Zones. GSA Special Papers, vol. 436, p. 1-26. https://doi.org/10.1130/2008.2436(16)

Kamble, A.D., Saxena, V.K., Chavan, P.D., Singh, B.D., Mendhe, V.A. 2019. Petrographic and chemical reactivity assessment of Indian high ash coal with different biomass in fluidized bed co-gasificatio. Journal of the Energy Institute, vol. 92(4), p. 982-1004. https://doi.org/10.1016/j.joei.2018.07.007

Kumar, A. Singh, A.K., Singh, P.K., Singh, A.L., Jha, M.K. 2018. Demineralization Study of High-Ash Permian Coal with Pseudomonas mendocina strain B6-1: A Case Study of the South Karanpura Coalfield, Jharkhand, India. Energy Fuels, vol. 32(2), p. 1080-1086. https://doi.org/10.1021/acs.energyfuels.7b02562

Labandeira, C.C. 2018. The Fossil History of Insect Diversity. In: Foottit, R.G., Adler, P.H. (eds.) The Fossil History of Insect Diversity, p. 723-788. https://doi.org/10.1002/9781118945582.ch24

Leckie, D.A. 1994. Canterbury Plains, New Zealand - implications for sequence stratigraphic models. American Association of Petroleum Geologists Bulletin, 78(8), p. 1240-1256. https://doi.org/10.1306/A25FEABD-171B-11D7-8645000102C1865D

Leckie D.A. 2003. Modern environments of the Canterbury Plains and adjacent offshore areas, New Zealand - an analog for ancient conglomeratic depositional systems in nonmarine and coastal zone settings. Bulletin of Canadian Petroleum Geology vol. 51(4), p. 389-425. https://doi.org/10.2113/51.4.389

Li, J., Zhang. J. 2017. Sequence Stratigraphy of Fluvial Facies: A New Type Representative from Wenliu Area, Bohai Bay Basin, China. Seismic and Sequence Stratigraphy and Integrated Stratigraphy - New Insights and Contributions. https://doi.org/10.5772/intechopen.71149

McCabe, P.J. 1987. Facies studies of coal and coal-bearing strata. Geological Society, London, Special Publications, vol 32, p. 51-66. https://doi.org/10.1144/GSL.SP.1987.032.01.05

McLoughlin, S., Prevec, R., Slater, B. 2021. Arthropod interactions with the Permian Glossopteris flora. Journal of Palaeosciences, vol. 70(1-2), p. 43-133. https://doi.org/10.54991/jop.2021.11

Manankov, I.N. 1998. Late Permian productida (Brachiopoda) from southeastern Mongolia: Paleontological Journal, vol. 32, p. 486-492.

Manankov, I.N. 1999. Reference section and upper Permian zonation in Southeastern Mongolia. Stratigrafia i Geologicheskaya Korrelyatsia, vol. 7(1), p. 56-65.

Manankov, I.N. 2004: New species of Early Permian brachiopods and biostratigraphy of the Boreal basin of Mongolia. Paleontological Journal 38 (4), 366-372.

Manankov, I.N., Shi, G.R., Shen, S.Z. 2006. An overview of Permian marine stratigraphy and biostratigraphy of Mongolia. Journal of Asian Earth Sciences, vol. 26(3-4), p. 294-303. https://doi.org/10.1016/j.jseaes.2005.11.008

Manankov, I.N. 2012. Brachiopods, biostratigraphy, and correlation of the Permian marine deposits of Mongolia. Paleontological Journal, vol. 46(12), p. 1325-1349. https://doi.org/10.1134/S0031030112120040

Messager, M.L., Lehner, B., Cockburn, C., Lamouroux, N., Pella, H., Snelder, T., Tockner, K., Trautmann, T., Watt, C., Datry, Th. 2021. Global prevalence of non-perennial rivers and streams. Nature, vol. 594, 391-397. https://doi.org/10.1038/s41586-021-03565-5

Miall, A.D. 1996. The Geology of Fluvial Deposits. Sedimentary Facies, Basin Analysis and Petroleum Geology. Springer Verlag, Berlin, 582 p.

Michaelsen, P. and Demberelsuren, B. (in prep). Maceral analysis, petro-chemical composition and cross-basin correlation of two late Permian coal deposits in central and southern Mongolia. Mongolian Geoscientist.

Michaelsen, P., Storetvedt, K.M. 2023b. Protracted destabilization and collapse of peat mire ecosystems at the Permo-Triassic boundary recorded by a sequence of related transtensive sub-basins in central and southern Mongolia. Permophiles, vol. 76, p. 46-51.

Michaelsen, P., Storetvedt, K.M. 2023. Tectonic evolution of a sequence of related late Permian transtensive coal-bearing sub-basins, Mongolia: A global wrench tectonics portrait. Mongolian Geoscientist, vol. 28(57), p. 1-53. https://doi.org/10.5564/mgs.v28i57.3200

Michaelsen, P. 2016. Late Permian coal formation under boreal conditions along the shores of the Mongol-Transbaikalian seaway. New Concepts in Global Tectonics Journal, vol. 4(4), p. 615-636.

Michaelsen, P. 2002. Mass extinction of peat-forming plants and the effect on fluvial styles across the Permo-Triassic boundary, Bowen Basin, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 179(3-4), p. 173-188. https://doi.org/10.1016/S0031-0182(01)00413-8

Michaelsen, P., Henderson, R.A., Crosdale, P.J., Fanning, C.M. 2001. Age and significance of the Platypus-Tuff Bed, a regional reference horizon in the Upper Permian Moranbah Coal Measures, north Bowen Basin. Australian Journal of Earth Sciences, vol. 48(2), p. 183-192. https://doi.org/10.1046/j.1440-0952.2001.00854.x

Michaelsen, P., Henderson, R.A. 2000a. Facies relationships and cyclicity of high-latitude, Late Permian coal measures, Bowen Basin, Australia. International Journal of Coal Geology, vol. 44(1), p. 19-48. https://doi.org/10.1016/S0166-5162(99)00048-8

Michaelsen, P., Henderson, R.A. 2000b. Sandstone petrofacies expressions of multiphase basinal tectonics and arc magmatism: Permian-Triassic north Bowen Basin, Australia. Sedimentary Geology, v. 136(1-2), p. 113-136. https://doi.org/10.1016/S0037-0738(00)00090-7

Michaelsen, P., Henderson, R.A., Crosdale, P.J., Mikkelsen, S.O. 2000. Facies architecture and depositional dynamics of the Upper Permian Rangal Coal Measures, Bowen Basin, Australia. Journal of Sedimentary Research, vol. 70(4), p. 879-895. https://doi.org/10.1306/2DC4093F-0E47-11D7-8643000102C1865D

Michaelsen, P., Foster, C.B., Henderson, R.A. 1999: Destabilization and collapse of a long-lived (c. 9 My) peat mire ecosystem and dramatic changes of alluvial architecture: Permian-Triassic boundary, northern Bowen Basin, Australia. In: Yin, H., Tong, J. (eds.) International conference on Pangea and the Paleozoic-Mesozoic transition, Wuhan, China, 9-11 March, 1999, p. 137-140.

Miller, M.F., Curran, H.A., Martino R.L. 1998. Ophiomorpha Nodosa in estuarine sands of the lower Miocene Calvert Formation at the Pollack farm site, Delaware. Delaware Geological Survey Special Publication, vol. 21, p. 41-46.

Mironov, K.V. 1964. Geologiia mestorozhdenii uglia i goriuchikh slantsev SSSR, vol. 8, Moscow.

Nagy, J. Rodríguez Tovar, F.J., Reolid, M. 2016. Environmental significance of Ophiomorpha in a transgressive-regressive sequence of the Spitsbergen Paleocene. Polar Research, vol. 35, 24192. https://doi.org/10.3402/polar.v35.24192

Naik, A.S., Behera, B., Shukla, U.K., Sahu, H.B., Singh, P.K., Mohanty, D., Sahoo, K., Chatterjee, D. 2021. Mineralogical Studies of Mahanadi Basin coals based on FTIR, XRD and Microscopy: A Geological Perspective. Journal of the Geological Society of India, vol. 97, p. 1019-1027. https://doi.org/10.1007/s12594-021-1817-9

Orolmaa, D., Uranbileg, L., Badarch, G. 1999. Stratigraphic questions of coal-bearing deposits in the vicinity of the spring Yamaan-Us bulag. Mongolian Geoscientist, vol. 14, p. 2-8.

Parihar, V.S., Nama, S.L., Khichi, C.P., Shekhawat, N.S., Snehlata, M., Mathur, S.C. 2016: Near Shore Shallow Marine (Ophiomorpha and Margaritichnus) Trace Fossils from Fatehgarh Formation of Barmer Basin, Western Rajasthan, India. Journal of Ecosystem & Ecography, vol. 6, 180. https://doi.org/10.4172/2157-7625.1000180

Pemberton, S.G., Frey, R.W. 1982. Trace fossil nomenclature and the Planolites-Palaeophycus dilemma. Journal of Paleontology, vol. 56(4), p. 843-881. https://www.jstor.org/stable/1304706

Postma, G., Nemec, W. 1990. Regressive and transgressive sequences in a raised Holocene gravelly beach, southwestern Crete. Sedimentology, vol. 37(5), p. 907-920. https://doi.org/10.1111/j.1365-3091.1990.tb01833.x

Rampino, M.R., Prokoph, A., Adler, A. 2000. Tempo of the end-Permian event: High- resolution cyclostratigraphy at the Permian-Triassic boundary. Geology, vol. 28(7), p. 643-646. https://doi.org/10.1130/0091-7613(2000)028<0643:TOTEPE>2.3.CO;2

Reading, H.G., Collinson, J.D. 1996. Clastic Coasts. In: Reading, H.G. (ed.) Sedimentary Environments: Processes, Facies and Stratigraphy. Third Edition. Blackwell Science, p. 154-231.

Reineck, H.E., Singh, I.B. 1980. Depositional Sedimentary Environments, Second Edition. Springer Verlag, Berlin, 551 p. https://doi.org/10.1007/978-3-642-81498-3

Retallack, G.J. 2013. Permian and Triassic greenhouse crises. Gondwana Research, vol. 24(1), p. 90-103. https://doi.org/10.1016/j.gr.2012.03.003

Ross, C.A., Ross, J.R.P. 1994: Permian sequence stratigraphy and fossil zonation. In: Embry, A.F., Beauchamp, Glass, D.J. (eds.) Pangea: Global Environments and Resources. Canadian Society of Petroleum Geologists Memoir, vol. 17, p. 219-231.

Saha, A., Chakrabarty, S., Bhattacharya, B. 2022. Evidence of the Permian marginal marine sedimentation recorded in sub-surface drill cores, Lower Gondwana successions, southern India. Journal of Earth System Science, vol. 131, 134. https://doi.org/10.1007/s12040-022-01866-5

Schachat, S.R., Labandeira, C.C., Gordon, J., Chaney, D., Levi, S., Halthore, M.N., Alvarez, J. 2014. Plant-Insect Interactions from Early Permian (Kungurian) Colwell Creek Pond, North-Central Texas: The Early Spread of Herbivory in Riparian Environments. International Journal of Plant Sciences, vol. 175(8), p. 855-890. https://doi.org/10.1086/677679

Schultz, B.P., Vickers, M.L., Huggett, J., Madsen, H., Heilmann-Clausen, C., Friis, H., Suess, E. 2020. Palaeogene glendonites from Denmark. Bulletin of the Geological Society of Denmark, vol. 68, p. 23-35. https://doi.org/10.37570/bgsd-2020-68-03

Schultz, B.P. 2009. Pseudomoroh after ikaite - called Glendonite is it a geological thermometer in cold sediments or geological oddity as it occurs close to PETM in the Fur formation. IOP Conference Series. Earth and Environmental Science, vol. 6, 072059. https://doi.org/10.1088/1755-1307/6/7/072059

Selleck, B.W., Carr, P.F., Jones, B.G. 2007. A review and synthesis of glendonites (pseudomorphs after ikaite) with new data: assessing applicability as recorders of ancient cold water conditions. Journal of Sedimentary Research, vol. 77, p. 980-991. https://doi.org/10.2110/jsr.2007.087

Simǒes, M.G., Matos S.A., Anelli, L.E., Rohn, R. Warren, L.V., David, L.M. 2015. A new Permian bivalve-dominated assemblage in the Rio do Rasto Formation, Paraná Basin, Brazil: Faunal turnover driven by regional scale environmental changes in a vast epeiric sea. Journal of South American Earth Sciences, vol. 64(1), p. 14-26. https://doi.org/10.1016/j.jsames.2015.09.009

Smith, N.D. 1970. The Braided Stream Depositional Environment: Comparison of the Platte River with Some Silurian Clastic Rocks, North-Central Appalachians. Geological Society of America, Bulletin, vol. 81(10), p. 2993-3014. https://doi.org/10.1130/0016-7606(1970)81[2993:TBSDEC]2.0.CO;2

Storetvedt, K.M., Michaelsen, P. (in press). Sedimentary basins, hydrocarbons, graphite, coal, and Cu-Au deposits - from Mongolia to the Pacific margin: Interplay between the ubiquitous orthogonal fracture network and Global Wrench Tectonics. Mongolian Geoscientist.

Storetvedt, K.M. 2003. Global Wrench Tectonics. Bergen, Fagbokforlaget, 397 p.

Surlyk, F., Arndorff, L., Hamann, N.-E., Hamberg, L. Johannessen, P.N., Koppelhus, E.B., Nielsen, L.H., Noe-Nygaard, N., Pedersen, G.K., Petersen, H.I. 1995. High-resolution sequence stratigraphy of a Hettangian-Sinemurian paralic succession, Bornholm, Denmark. Sedimentology, vol. 42, p. 323-354. https://doi.org/10.1111/j.1365-3091.1995.tb02105.x

Tiwari, H.P., Halder, S.K., Das, A., Mishra, P., Kumar, A., Khattri, P. 2017. Potential Use of High Ash Indian Medium Coking Coal in Stamp Charged Coke Making. International Journal of Coal Preparation and Utilization, vol. 39(2), p. 101-111. https://doi.org/10.1080/19392699.2017.1305959

Uchman, A. 1995. Taxonomy and palaeoecology of flysch trace fossils: The Marnoso-arenacea Formation and associated facies (Miocene, Northern Apennines, Italy). Beringeria, v. 15, p. 3.

Weisenfluh, G.A., Ferm, J.C. 1984, Geologic controls on deposition of the Pratt seam, Black Warrior Basin, Alabama, U.S.A. In: Rahmani, R.A., Flores, R.M. (eds.) Sedimentology of Coal and Coal-bearing Sequences, International Association of Sedimentologists, Special Publication 7, p. 317-330. https://doi.org/10.1002/9781444303797.ch18

Wu, C., Kim, W., Herring, R., Cardenas, B.T., Dong, T.Y., Ma, H., Moodie, A., Nittrouer, J.A., Tsai, F., Li, A. 2023. Lowland river sinuosity on Earth and Mars set by the pace of meandering and avulsion. Nature Geoscience, vol. 16, p. 747-753. https://doi.org/10.1038/s41561-023-01231-1

Yin, H., Zhang, K., Tong, J., Yang, Z., Wu, S. 2001. The Global Stratotype Section and Point (GSSP) of the Permo-Triassic boundary. Episodes, vol. 24(2), p. 102-114. https://doi.org/10.18814/epiiugs/2001/v24i2/004

Downloads

Published

2024-06-11

How to Cite

Michaelsen, P., & Demberelsuren, B. (2024). Petro-chemical characterization and depositional setting of a late Permian high ash coal deposit, Central Mongolia. Mongolian Geoscientist, 29(58), 55–79. https://doi.org/10.5564/mgs.v29i58.3448

Issue

Section

Articles