Geomorphological study of the origin of Mongolian Altai Mountains Lake depressions: implications for the relationships between tectonic and glacial processes

Authors

DOI:

https://doi.org/10.5564/mgs.v29i58.3237

Keywords:

Western Mongolia, glacial lakes, morphometric analysis, geomorphological criteria

Abstract

The lake depressions in the Mongolian Altai Mountains, and the issues related to their formation have yet to be thoroughly examined in previous research. Previous studies primarily focused on the paleogeographical evolution and glaciation dynamics of the Altai Mountains. This study presents relationships between tectonic and glacial processes that have formed the lake depressions, such as
Khoton, Khurgan, Dayan, Khar (western), and Khar (eastern) in the Mongolian Altai Mountains. The depressions of Khoton, Khurgan, and Dayan lakes are situated along regional fault zones, extending in an northwest-southeast direction, forming intermontane depressions directly connected to the Mongolian Altai Mountains. 
However, the depressions of Dayan, Khar (western), and Khar (eastern) lakes have been dammed by moraine deposits in the near portion of the depression. The compliance matrix of tectonic geomorphological criteria indicates that the Khoton, Khurgan, Dayan Lake, and Khar (western) Lake depressions are more than 50% compatible. Similarly, the compliance matrix for glacial  eomorphological criteria indicates more than 60% compliance for all lake depressions. The Mongolian Altai intermontane depressions are thus of tectonic origin, whereas the lakes have a glacial origin, resulting from dammed moraine sediments. The significance
of this work lies in demonstrating how geomorphological research can be employed to provide a detailed understanding of the pattern of lake depressions.

Downloads

Download data is not yet available.
Abstract
328
PDF
299

References

Bliedtner, M., Struck, J., Strobel, P., Salazar, G., Szidat, S., Bazarradnaa, E., Lloren, R., Dubois, N., Zech, R. 2021. Late Holocene climate changes in the Altai Region based on the first high‐resolution biomarker isotope record from Lake Khar Nuur. Geophysical Research Letters, v. 48(20), p. 1-11. https://doi.org/10.1029/2021GL094299

Bold, Ya. 1987. Fundamentals of Geomorphological research. Ulaanbaatar, Mongolia, p. 94-98 (in Mongolian).

Byamba, J. 2009. Lithospheric Plate Tectonics, Geology and Mineral Resources of Mongolia. v. IV, Ulaanbaatar, p. 126-128 (in Mongolian).

Cohen, A.S. 2003. Paleolimnology: The History and Evolution of Lake Systems. Oxford University Press. p. 21-66. https://doi.org/10.1093/oso/9780195133530.001.0001

Cunningham, D. 2005. Active intracontinental transpressional mountain building in the Mongolian Altai: Defining a new class of orogen. Earth and Planetary Science Letters, v. 240(2), p. 436-444. https://doi.org/10.1016/j.epsl.2005.09.013

Cunningham, D., Dijkstra, A., Howard, J., Quarles, A., Badarch, G. 2003. Active intraplate strike-slip faulting and transpressional uplift in the Mongolian Altai. Geological Society, London, Special Publications, 210(1), p. 65-87. https://doi.org/10.1144/GSL.SP.2003.210.01.05

Cunningham, W.D. 1998. Lithospheric controls on late Cenozoic construction of the Mongolian Altai. Tectonics, v. 17(6), p. 891-902. https://doi.org/10.1029/1998TC900001

Dashtseren, Ts. 2006. Glacial surface features of Khoton and Khurgan Lake regions, Natural conditions, resources, and biodiversity of the Mongolian Altay region, No. 2. Ulaanbaatar. p. 44-46

De Grave, J., Buslov, M.M., Van den Haute, P. 2007. Distant effects of India–Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: Constraints from apatite fission-track thermochronology. Journal of Asian Earth Science, v. 29 (2-3), p. 188-204. https://doi.org/10.1016/j.jseaes.2006.03.001

Dearing, J.A., Foster, D.L. 1993. Lake sediments and geomorphological processes: Some Thoughts. In McManuc, J., Duck R.W. (Eds) Geomorphology and Sedimentology of Lakes and Reservoirs, p. 5-14.

Dergunov, A.B., Luvsandanzan, B., Pavlenko, V.S. 1980. Geology of West Mongolia, Transactions, v. 31, 195 p. Moscow, Nauka (in Russian)

Devjatkin, E.V. 1981. Cenozoic of Inner Asia. Nauka, Moscow, p. 196-198 (in Russian).

Doljin, D., Yembuu, B. 2021. The Relief and Geomorphological Characteristics of Mongolia. In The Physical Geography of Mongolia. Cham: Springer International Publishing. p. 23-50. https://doi.org/10.1007/978-3-030-61434-8_3

Enkhbold, A., Dorjsuren, B., Khukhuudei, U., Yadamsuren, G., Badarch, A., Dorjgochoo, S., Gonchigjav, Y., Nyamsuren, O., Ragchaa, G., Gedefaw, M. 2022b. Impact of faults on the origin of lake depressions: a case study of Bayan Nuur depression, North-west Mongolia, Central Asia. Geografia Fisica e Dinamica Quaternaria, v. 44(1), p. 53-66. https://doi.org/10.4461/GFDQ.2021.44.5

Enkhbold, A., Khukhuudei, U., Doljin, D. 2022d. A review of modern trends and historical stages of development of lake research in Mongolia. Proceedings of the Mongolian Academy of Sciences, v. 62(01) p. 25-37. https://doi.org/10.5564/pmas.v62i01.2085

Enkhbold, A., Khukhuudei, U., Doljin, D. 2021. Morphological classification and origin of lake depressions in Mongolia. Proceedings of the Mongolian Academy of Sciences, v. 61(02), p. 35-43. https://doi.org/10.5564/pmas.v61i02.1758

Enkhbold, A., Khukhuudei, U., Kusky, T., Chun, X., Yadamsuren, G., Ganbold, B., Gerelmaa, T. 2022c. Morphodynamic development of the Terkhiin Tsagaan Lake Depression, Central Mongolia: Implications for the relationships of Faulting, Volcanic Activity, and Lake Depression Formation. Journal of Mountain Science, v. 19(9), p. 2451-2468. https://doi.org/10.1007/s11629-021-7144-1

Enkhbold, A., Khukhuudei, U., Kusky, T., Tsermaa, B., Doljin, D. 2022a. Depression morphology of Bayan Lake, Zavkhan province, Western Mongolia: implications for the origin of lake depression in Mongolia. Physical Geography, v. 43(6), p. 727-752. https://doi.org/10.1080/02723646.2021.1899477

Filosofov, V.P. 1967. The value of the map of potential relief energy for geomorphological and Neotectonic studies. Methods geomorphological. Novosibirsk: Science. Siberian Department. p. 193-198.

Florinsky, I.V. 1996. Quantitative topographic method of fault morphology recognition. Geomorphology, 16(2), p. 103-119. https://doi.org/10.1016/0169-555X(95)00136-S

Hakanson, L. 2012. A manual of lake morphometry. Springer Science & Business Media. p. 56-78. https://doi.org/10.1007/978-3-642-81563-8

Hassen, M.B., Deffontaines, B., Turki, M.M. 2014. Recent tectonic activity of the Gafsa fault through morphometric analysis: Southern Atlas of Tunisia. Quaternary International, v. 338, p. 99-112. https://doi.org/10.1016/j.quaint.2014.05.009

He, C., Cheng, Y., Rao, G., Chen, P., Hu, J., Yu, Y., Yao, Q. 2018. Geomorphological signatures of the evolution of active normal faults along the Langshan Mountains, North China. Geodinamica Acta, v. 30(1), p. 163-182. https://doi.org/10.1080/09853111.2018.1458935

Hutchinson, G.E. 1957. A Treatise on Limnology. Vol. 1, Geography, Physics, and Chemistry. Geological Magazine, v. 95(1), p. 1-57.

Jacques, P.D., Salvador, E.D., Machado, R., Grohmann, C.H., Nummer, A.R. 2014. Application of morphometry in neotectonic studies at the eastern edge of the Paraná Basin, Santa Catarina State, Brazil. Geomorphology, v. 213(1/2), p. 13-23. https://doi.org/10.1016/j.geomorph.2013.12.037

Jolivet, M., Ritz, J.-F., Vassallo, R., Larroque, C., Braucher, R., Todbileg, M., Chauvet, A., Sue, C., Arnaud, N., De Vicente, R., Arzhanikova, A., Arzhanikov, S. 2007. Mongolian summits: an uplifted, flat, old but still preserved erosion surface. Geology, v. 35(10), p. 871-874. https://doi.org/10.1130/G23758A.1

Khukhuudei, U., Kusky, T., Otgonbayar, O., Wang, L. 2020. The early Paleozoic mega-thrusting of the Gondwana‐derived Altay–Lake zone in Western Mongolia: Implications for the development of the Central Asian Orogenic Belt and Paleo-Asian Ocean Evolution. Geological Journal, v. 55(3), p. 2129-2149. https://doi.org/10.1002/gj.3753

Khukhuudei, U., Kusky, T., Windley, B., Otgonbayar, O., Wang, L. 2022. Ophiolites and ocean plate stratigraphy (OPS) preserved across the Central Mongolian Microcontinent: A new mega-archive of data for the tectonic evolution of the Paleo-Asian Ocean. Gondwana Research, v. 105, 51-83. https://doi.org/10.1016/j.gr.2021.12.008

Klinge, M. 2001. Glazial geomorphologische Untersuchungen im Mongolischen Altai als Beitrag zur jungquartären Landschafts-und Klimageschichte der Westmongolei. Geographisches Institut der RWTH. p. 24-46.

Klinge, M., Sauer, D. 2019. Spatial pattern of Late Glacial and Holocene climatic and environmental development in Western Mongolia-A critical review and synthesis. Quaternary Science Reviews, v. 210, 26-50. https://doi.org/10.1016/j.quascirev.2019.02.020

Klinge, M., Schluetz, F., Zander, A., Huelle, D., Batkhishig, O., Lehmkuhl, F. 2021. Late Pleistocene Lake level, glaciation, and climate change in the Mongolian Altai deduced from sedimentological and palynological archives. Quaternary Research, v. 99, p. 168-189. https://doi.org/10.1017/qua.2020.67

Lehmkuhl, F., Klinge, M., Rother, H., Hülle, D. 2016. Distribution and timing of Holocene and late Pleistocene glacier fluctuations in western Mongolia. Annals of Glaciology, v. 57(71), p. 169-178. https://doi.org/10.3189/2016AoG71A030

Lehmkuhl, F., Klinge, M., Stauch, G. 2011. The extent and timing of Late Pleistocene Glaciations in the Altai and neighboring mountain systems. In Ehlers, J., Gibbards, P.L. (Eds) Quaternary Glaciations - Extent ad Chronology: A Closer Look, v. 15, p. 967-979.

Mark, D.M. 1975. Computer Analysis of Topography: A Comparison of Terrain Storage Methods. Geografiska Annaler: Series A, Physical Geography, v. 57(3-4), p. 179-188. https://doi.org/10.1080/04353676.1975.11879914

Mats, V.D. 1993. The structure and development of the Baikal rift depression. Earth-Science Reviews, v. 34(2), p. 81-118. https://doi.org/10.1016/0012-8252(93)90028-6

Nixon, M.S., Aguado, A.S. 2019. Feature Extraction and Image Processing. Newnes. p. 263-282. https://doi.org/10.1016/C2011-0-06935-1

Rudaya, N., Li, H.C. 2013. A new approach for reconstruction of the Holocene climate in the Mongolian Altai: The high-resolution δ13C records of TOC and pollen complexes in Hoton-Nur Lake sediments. Journal of Asian Earth Sciences, v. 69(2), p. 185-195. https://doi.org/10.1016/j.jseaes.2012.12.002

Rudaya, N., Tarasov, P., Dorofeyuk, N., Solovieva, N., Kalugin, I., Andreev, A., Daryin, A., Diekmann, B., Riedel, F., Tserendash, N., Wagner, M. 2009. Holocene environments and climate in the Mongolian Altai reconstructed from the Hoton-Nur pollen and diatom records: a step towards better-understanding climate dynamics in Central Asia. Quaternary Science Reviews, v. 28(5-6), p. 540-554. https://doi.org/10.1016/j.quascirev.2008.10.013

Sevastyanov, D.V., Shuvalov, V.F., Neustrueva, I.Y. 1994. Limnology and Paleolimnology of Mongolia. St. Petersburg, p. 59-94 (in Russian)

Shinneman, A.L., Almendinger, J.E., Umbanhowar, C.E., Edlund, M.B., Nergui, S., 2009. Paleolimnologic Evidence for Recent Eutrophication in the Valley of the Great Lakes (Mongolia). Ecosystems, v. 12, p. 944-960. https://doi.org/10.1007/s10021-009-9269-x

Singh, A.K., Mitra, S., Chaudhuri, D., Chaudhuri, B.B., Singh, M.P. 2023. Optimization of Multi-Class Non-Linear SVM Image Classifier Using A Sobel Operator Based Feature Map and PCA. 2023 3rd International Conference on Range Technology (ICORT) p. 1-6. IEEE. https://doi.org/10.1109/ICORT56052.2023.10249196

Sobel, I. 2014. An Isotropic 3x3 image gadient operator. Presentation at Stanford Project 1968.

Tapponnier, P., Molnar, P. 1979. Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia, and Baykal Regions. Journal of Geophysical Research: Solid Earth, v. 84(B7), p. 3425-3459. https://doi.org/10.1029/JB084iB07p03425

Tarasov, P., Dorofeyuk, N., Tseva, E.M. 2000. Holocene vegetation and climate changes in Hoton‐Nur basin, northwest Mongolia. Boreas, v. 29(2), p. 117-126. https://doi.org/10.1111/j.1502-3885.2000.tb01205.x

Tomurtogoo, O. 2014. Tectonics of Mongolia. In: Tectonics of Northern, Central and Eastern Asia, explanatory note to the Tectonic map of Northern Central Eastern Asia and adjacent areas at scale 1:2500000, p. 110-126.

Tsegmid, S. 1969. Physical geography of Mongolia. Mongolian Academy of Sciences, Institute of Geography and Permafrost. Ulaanbaatar, Mongolia. p. 23-67 (in Mongolian)

Tsegmid, S., Vorobiev, B.B. 1990. National Atlas of the People’s Republic of Mongolia. Academy of Sciences of the People’s Republic of Mongolia: Ulaanbaatar. p. 118-127

Tserensodnom, J. 1971. Lakes of Mongolia. Mongolian Academy of Sciences, Institute of Geography and Permafrost. Ulaanbaatar, Mongolia, p. 44-56 (in Mongolian)

Tserensodnom, J. 2000. Catalog of lakes of Mongolia. Mongolian Academy of Sciences, Institute of Geography and Permafrost. Ulaanbaatar, Mongolia p. 67-76. (in Mongolian)

Unkelbach, J., Kashima, K., Enters, D., Dulamsuren, C., Punsalpaamuu, G., Behling, H. 2019. Late Holocene (Meghalaya) palaeoenvironmental evolution inferred from multi-proxy studies of lacustrine sediments from the Dayan Nuur region of Mongolia. Paleogeography, Palaeoclimatology, Palaeoecology, v. 530, p. 1-14. https://doi.org/10.1016/j.palaeo.2019.05.021

USGS. 2023. Available online: https://earthexplorer.usgs.gov (accessed on March 2023).

Walther M., Dashtseren, A., Kamp, U., Temujin, K., Meixner, F., Pan, C.G., Gansukh, Y. 2017. Glaciers, Permafrost, and Lake Levels at the Tsengel Khairkhan Massif, Mongolian Altai, During the Late Pleistocene and Holocene. Geosciences, v. 7(3), p. 1-20. https://doi.org/10.3390/geosciences7030073

Walther, M., Kamp, U., Nandintsetseg, N-O., Dashtseren, A., Temujin, K. 2024. Glacial Lakes of Mongolia. Geographies, v. 4(1), p. 21-39. https://doi.org/10.3390/geographies4010002

Wetzel, R.G. 2001. Rivers and Lakes-Their Distribution, Origins, and Forms. Limnology: Lake and River Ecosystems. Gulf Professional Publishing. p. 15-42. https://doi.org/10.1016/B978-0-08-057439-4.50007-1

Yang, X., Li, W., Qin, Z. 2015. Calculation of reverse-fault-related parameters using topographic profiles and fault bedding. Geodesy and Geodynamics, v. 6(2), p. 106-112. https://doi.org/10.1016/j.geog.2014.09.002

Yembuu, B., Doljin, D. 2021. Historical Geography: Administrative Division and Research in Physical Geography of Mongolia. The Physical Geography of Mongolia. Springer International Publishing. p. 9-22. https://doi.org/10.1007/978-3-030-61434-8_2

Downloads

Published

2024-03-26

How to Cite

Enkhbold, A., Khukhuudei, U., Bae Seong, Y., Gonchigjav, Y., Dingjun, L., & Ganbold, B. (2024). Geomorphological study of the origin of Mongolian Altai Mountains Lake depressions: implications for the relationships between tectonic and glacial processes. Mongolian Geoscientist, 29(58), 1–18. https://doi.org/10.5564/mgs.v29i58.3237

Issue

Section

Articles