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Abstract: We consider the problem of minimizing a sums of ratios that belong to a class of global
optimization problems. Since the problem is nonconvex, the application of local search algorithms
can not always guarantee to find a global solution. It has been shown that problem can be solved by
DC programming methods and algorithms. Dinkelbach-type algorithms are more efficient techniques
because fractional problems reduce to a scalarized optimization problem. For solving the problem,
we apply a generalized Dinkelbach algorithm requires finding the roots of a nonlinear equation. The
numerical experiments were conducted on Python Jupyter Notebook for a box constrained set. The
problem also has been solved by a gradient descent method and compared with the Dinkelbach
algorithm. Numerical results are provided.
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1. Introduction

The problem of optimizing one or several ratios of functions is called a fractional
program [3]. In this paper, we consider the following fractional programming problem which
consists of the sum of ratio convex functions:

N
. fi(x)
;IélB ;21 @) (1.1)

Where D C R™ and f;(z), gi(x),i=1,2,...,N are convex on D.

The sum-of-ratios problem, which is to minimize a sum of several fractional functions subjected
to convex constraints, is difficult to solve by traditional optimization methods. Fractional
programs with only a single ratio or a maximum of finitely many ratios are fairly well
understood. Under suitable conditions, these problems still satisfy some form of generalized
convexity, which can be exploited in algorithms for the numerical solution of such problems
[4]. On the other hand, fractional programs with sums of ratios are much more difficult and
not as well understood Algorithms for classes of sum-of-ratios problems are described in [5-10],
and in the review article [11]. Using the Dinkelbach algorithm [2] with vector parameter,the
problem is linearized, become the following DC-type form:

N N
F(z, A1, A2,...,AN) ZZfi(fU)—ZAiQi(x)~ (1.2)

Where \; C R", i =1,2,...,N.
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Solution of the problem (1.2) is determined by the root of the equation F'(A1, Ag,..., Any) = 0.
We also included Gradient descent (GD) method in our study, it is an iterative first-order
optimization algorithm used to find a local minimum of a given objective function. To find a
local minimum, the function “steps” in the direction of “the negative” of the gradient. Gradient
descent method is widely used in field of deep learning especially neural networks such as DNN
(deep neural network) [12], CNN (Convolutional Neural Networks) [13] and others. The goal
of this method is find optimal solution when minimizing the differentiable objective function:

0" = argggBF(F)) (1.3)

and the standard approach is the following sequences
9t+1 = Ht - atVF(H) (14)

where ¢ is number of iterations.
The estimation of these two methods are performed by Python Jupyter Notebook and
results are compared.

2. Methodology

2.1. SLSQP-Sequential Least-Squares Programming

SLSQP is a sequential quadratic programming (SQL) optimization algorithm proposed
by Dieter Kraft in 1988 [14]. This is an iterative method for nonlinear optimization problems
where objective function and constraints are twice continuously differentiable. Structure
algorithm of SQL is the following nonlinear programming problems with minimizing a scalar

function:
min p(x) (2.1)

subject to general equality and inequality constraints:

gi(z) >0, i=12 ...k (2.2)

gj(x)=0, j=k+1,...,m. (2.3)

and to lower and upper bounds on the variables:
ligmgui,izl,z...,n. (24)
This problem (2.1)-(2.4) is can be solved by Lagrangian method

L(%Mla/@) :p(l‘) - Mlqz(‘r) - MQQJ($)7 i= 1527' . 'ak'7 ] =k+ 17' <oy M. (25)

where p1 and pe are Lagrangian multipliers [15].

SQP methods solve a sequence of optimization subproblems, each of which optimizes a
quadratic model of the objective subject to a linearization of the constraints. If the problem
is unconstrained, then the method reduces to Newton’s method for finding a point where
the gradient of the objective vanishes. If the problem has only equality constraints, then the
method is equivalent to applying Newton’s method to the first-order optimality conditions,
or Karush-Kuhn—Tucker conditions, of the problem. At an iterate xj, a basic sequential
quadratic programming algorithm defines an appropriate search direction dj as a solution to
the quadratic programming subproblem:

1
mdinp(ﬂfk) + V()" d + §dTWk(1‘, p)d. (2.6)
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subject to general equality and inequality constraints:

qi(zp) + Vai(zp)Td >0, i=1,2,... k. (2.7)

qj(zr) + Vg (xr)Td=0, j=k+1,...,m. (2.8)

Where Wy (z, 1) denotes the Hessian of the Lagrangian:
W (@, ) = Vi, L(z, p). (2.9)
Denote by A is the Jacobian matrix, that is

A@@)" = (Vai (2), Vaz (@), - .., Vg (2)) (2.10)
where g;(z) is i-th component of the vector ¢(z) [15].

Theorem 2.1. Suppose that x* is a solution point of problem(2.1)-(2.4). Assume that the
Jacobian A, of the active constraints at x* has full rank, that d"W.d > 0 for all d # 0 such
that A.d = 0, and that strict complementary holds. Then if (xy, ux) is sufficiently close to
(x*, u*), there is a local solution of the subproblem (2.6)-(2.8),whose active set Ay, is the same
as the active set A, of the nonlinear program (2.1)-(2.4) at z*.

2.2. Dinkelbach-type algorithm
The algorithms is divided into the following steps:

Step 1: Get initial guess 2° then \) = o Eizg, i=1,2,...,Nand k = 1.

Step 2: Solve the following minimization optimization problem

N
F(z, M, Ao, . .. ; Ne=lg, ) 2.11
ggn (I 15 N2, a géHDl (Zf ; i g (’JJ)) ( )

%
Get optimal solution z¥ then \¥ = ﬂ(ixk;, 1=1,2,...,N.

)

Step 3: If F(A1, Ag,...,An) = 0 the algorithm stops and optimal solution is Ef\il A
1=1,2,...,N. Otherwise £k = k + 1 and goto Step 2.

Minimization problem (2.11) estimated by SLSQP(Sequential Least-Squares Programming)
method in Python Jupyter notebook.

2.3. Gradient descent method algorithm
The algorithm of gradient descent can be outlined as follows:

Step 1: Get initial guess zy and precision value e.

Step 2: k =k + 1 and find gradient of a given function: s = —VF(xx_1),

where VF(Z') — Z:’L L Vfl(z)!h(f]) (wv)gl(z)fl( )

Step 3: To choose the value «y, the consider the following problem
ap = argmin |F(zg—1 + agpsk—1)|- (2.12)
then xp, = xp_1 + QpSp_1.

Step 4: If ||z — xx—1]| < € the algorithm stops and optimal solution is F'(zy).
Otherwise goto Step 2.
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Consider the quadratic function:
1 /
r(z) = 2% Qx (2.13)
where @ is positive and symmetric, and method of steepest descent
T+1 = Tk — OékVT(LCk) (214)
where the stepsize ay, is chosen according to the minimization rule

r(zy — apVr(zg)) = glzilolr(mk —aVr(zy)). (2.15)

Theorem 2.2. [16] The minimization problem (2.14) holds the following estimates for all k,

(1) < (A]\j J_r 2)2 r (k) (2.16)

where M and m are the largest and smallest eigenvalues of Q, respectively.

2.4. Convergence of Dinkelbach-type algorithm

Convergence of Dinkelbach-type algorithm in fractional programming is formulated by [1].
Let be an open set Q € R™ given and functions f;(x),g;(z) : Q@ — R, i =1,2,...,m, that are
continuous on 2, and a closed set S C €2, such that

fi(x) >0,g;(x) >0, i=1,2,...,m, z€S. (2.17)
Consider the following fractional optimization problem

.= fil
F(x) :mxan; gz'Ex;

, z€S. (2.18)
Together with problem (2.18) we also create the parametric optimization problem:
G(z,a) = mgﬂlnzm:fl(x) —a;gi(x)). z €S (2.19)
i=1
Further, let introduce function V() of the optimal value to problem (2.19) as follows

V(i) = iI;f |G (z, )| = iI;f {Z |fi(x) — aigi(x)| - x € S} (2.20)

In addition, suppose that the following assumptions are fulfilled

o:V(a) > —o0,a € K,where K is a convex compact set from R™. (2.21a)
o: € K C R™ there exists a solution z = z(a) to problem (2.19). (2.21b)

Theorem 2.3. [1] Suppose that in problem (2.18) the assumptions (2.17), (2.21) are satisfied.
In addition, let there ervists a vector ag = (a1, 2, - - -, om)? € K C R™. Besides,suppose
that problem (2.18) in «g case,the following equality take place:

V(ag) = n;m{z |fi(x) — apigi(x)| :z € S} =0 (2.22)

Then, any solution z = z(a) to (2.22) is a solution (2.18), so that z € Sol(2.22) C Sol(2.18)

The proof of the this theorem is given in paper [1].
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3. The results

In the numerical experiment, we solve the following minimization problem (3.1) considered
for N = 2.

(3.1)

. <Czx,z > +<C'2ac,x>
min ,
weD | < C?2x,2 > < C3z,x >

Where D = {z € R" | 1 < 2 < 100} is compact and Cl,,,, is Cesaro matrix [17] which is

1 0 0 0
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= = 0 0

iil 0
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101 1 1

The Table 1 shows results of the problem (3.1) using Dinkelbach algorithm up to 100 dimension.

Table 1: The result of problem 3.1.

n Dinkelbach
A1 A2 min(A + A2) | k | time(s)

10 1.014 | 1.003 2.017 3 1.92
20 1.021 | 1.004 2.025 3 1.73
30 | 1.026 | 1.004 2.03 4 1.74
40 1.029 | 1.004 2.034 4 1.94
50 1.032 | 1.004 2.037 4 1.74
60 | 1.035 | 1.004 2.04 4 1.73
70 1.037 | 1.004 2.042 4 1.75
80 1.04 1.004 2.046 4 2.04
90 1.042 | 1.004 2.047 4 2.09
100 | 1.044 | 1.004 2.049 4 2.19

The Table 2 shows comparative results of between Dinkelbach algorithm and Gradient descent
method in the minimization problem (3.1).

Table 2: Compared results of problem 3.1.

n Dinkelbach Gradient descent
min | k | time(s) | min | k | time(s)
10 | 2.017 | 3 1.92 1.969 | 3 2.2
20 | 2.025 | 3 1.73 2.074 | 3 1.86
30 203 | 4 1.74 2143 | 3 2.51
40 | 2.034 | 4 1.94 2.194 | 3 1.76
50 | 2.037 | 4 1.74 2234 | 3 1.73
60 204 | 4 1.73 2.268 | 3 1.92
70 | 2.042 | 4 1.75 2.296 | 3 1.72
80 | 2.046 | 4 2.04 2.321 | 3 1.64
90 | 2.047 | 4 2.09 2342 | 3 1.6
100 | 2.049 | 4 2.19 2.362 | 3 1.61
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4. Conclusions

We consider the sum-of-ratio fractional minimization problem (1.1) over a box constrained
set with Cesaro matrix. We solve a problem (3.1) by two methods: Dinkelbach’s algorithm and
Gradient descent method. Comparisons of these two methods of the problem were made in up
to 100 dimensions and the numerical results were conducted on Python Jupyter notebook.In
convergence, these two methods are the same, but the solution of Dinkelbach algorithms
appears to be more stable than Gradient descent methods solution when increasing the
number of Cesaro matrix dimensions. In future, N=3 or more cases will be considered.
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Xypaauryii: JHIXYY CyJajraaniaa 6u rodbas ONTUMU3AIMIH aHrmIaL bartax Gyrapxaii
IIPOrPaMMYJIAJIBIH MEHUMYMYJIaX O0/JIOrBIr aB4 y3CH 60s1HO. Bojjioro Hb epoHXUil TOXHOJI-
JIOJI, T'YArSP OUIN TYJI JIOKAJ XailJIThIH apraap 60/10X0/ YPraJiK ri1o0asl Mnii OJII0XTYil. DHD
repiuita 60a0reir DC nmporpaM«iabie apraap muiiank 0oJIoXbIr Xapyysicad. JIuHken0ax
aJITOPUTM Hb OyTapxail MpOrpaMMTIAILIH OOMJIOTBIT SHIUAH ONTUMHUBAINIH OOJJTOTO, TIINJI-
KYYIIT TYJI WIYY YP AyHTIH apra oM. Witma aus 6oa710rsir 60m0x0m nakern6ax aaropurm
aITUIJIaH OJIOH XyBbCArdTail IryraMaH 0yc TITHIUTTIIUNH MHHIUAT 0JI0X apra pyy IMHIXKYY-
J19X GoJtomkToit Gaiimar. Toonoosuibir Python Jupyter Notebook masp 100 Xyprasix X3aMK3-
CHUITH XyBb/I XUICH Oa YYHUI 39DP3rI93 rpaJuedT OyypPaJIThlH apra 133D VP AYHTHUITH TYPIITAIT
xuitk, Jnakeap06ax aaropurMTail XapbIlyy/acan OOJIHO.

Tyaxyyp yrc: Huakenbax ajaropurm, rpajueHT OyypaJIThIH apra

15


https://orcid.org/0000-0001-7585-2943

