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Existence of blowing-up solutions to some Schrodinger equations including
nonlinear amplification with small initial data
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ABSTRACT. We consider the existence of blowing-up solutions to some Schrodinger equations

including nonlinear amplification. The blow-up is considered in L*(R). Even though initial
data are taken so small, there exist some solutions blowing-up in finite time. The theorem in

this paper is an extension of Cazenave-Martel-Zhao’s result [7] from the point of making the
lower bound of power of nonlinearity extended and from the point of ensuring that blowing-up
solutions exist even for small initial data.
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1. INTRODUCTION
We consider the Cauchy problem of a nonlinear Schrodinger equation:
iOu = —502u+ (A + i) |[ulP~u,
u(0, ) = ug(x),

where the complex-valued unknown function u = u(t, x) is defined on (t,z) € [0,7) x RL.
In the nonlinearity, the power satisfies 2 < p < 3 and the coefficients A, x € R satisfy

k>0, (p—1)A <2ypk. 2)

In particular, the positivity of  in (2) implies that the nonlinearity affects as an amplification.
To see it, we refer to the idea of Zhang [16]. If the region of x is a bounded interval I and
Dirichlet boundary condition is imposed, then it is easy to show that, for ug € L?*(R) and
ug # 0, the solution to (1) blows up in finite time. In fact, we have

(e))

dlu(t )HL2 I3
T( 2Re(u(t), pu(t)) 21
= 2nllu() 5 ),
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where (f, g L2( I f i f )dz is the usual L2-inner product. Applying Holder’s inequal-

)9 ()
ity : |7)®=D/2 |u(t )||’£ﬁ1(1 > ||u(t)||1£§(1[) where |I| denotes the size of the interval, we see
that

d||u(t)||%2(1)
dt

Solving this differential inequality, we have

26172 u(t) 173, )-

l[uoll 21y
=g
(1= 5o = DIT=0-072 gl t}

and we know that [[u(t)]| .2 (y) blows up in finite time. However, this kind of estimate holds only
in the case that « belongs to the bounded interval. Once the region becomes unbounded, the
dispersion associated with —%8% will work so that the nonlinear amplification is suppressed,
and it is difficult to presume that the nonlinear amplification surely generates a blowing-up
solution. Actually when 3 < p and uy is sufficiently small in H*(R) with zuy € L?(R) also
small, the solution to (1) exists globally in time. This is because |u(t, z)[P~! ~ Ct~(P~1D/2 js
integrable for large ¢, and the nonlinearity does not affect to the behavior of the solution. This
observation suggests that, if we expect the blow-up for a small initial data, it is necessary to
assume p < 3.

Our goal is to obtain blowing-up solutions to (1) even though the smallness is assumed on
the initial data.

lu@)ll 2y =

Theorem 1.1. Let 2 < p < 3. Also let A and & satisfy (2). Then, for any p > 0, there exists
some initial datum ug € L*(R) such that

(@) lluoll L2y < p.
(1) the solution u to (1) with ug as the initial datum satisfies

lim [[u(t)12() = 0 G)

for some T > 0.

Theorem 1.1 asserts the existence of a blowing-up solution only for some special small initial
data. It remains open whether any small initial data except for ug = 0 give rise to the blow-
up. However, Cazenave-Correia-Dickstein-Weissler [1] proved that any nontrivial solution in
H'(R) is estimated from below with a function of ¢ growing-up to oo as t — co — the solution
may either blow up in finite time or grow up at t = co

In Theorem 1.1, the lower bound of p is required for the technical reason that the blowing-up
profile must be integrable around the blowing-up time with respect to ¢. The upper bound of
p is required to ensure the existence of blowing-up solution for small initial data. Precisely
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speaking, we will first construct a blowing-up profile, construct a solution to (1) which ap-
proaches to the profile while ¢ 1 T'*, and extend it backward in time. In order to guarantee the
decay of the solution in the negative time-direction, the assumption of p < 3 is required.

The construction of a blowing-up solution to some Schrodinger equation with nonlinear
source term was considered by Cazenave-Martel-Zhao [7]. They treated the N-dimensional
nonlinear Scrodinger equation :

i = —Au + i|ulPu,

where (t,7) € R x RN and A = Zjvzl Eﬁj. In their idea, a profile ¢(¢, ) of the blow-up
solution was firstly determined, which is subject to the ODE :

Zat@(tv 33') = i|<p|p71<p(t7 Z‘)

They employed, for instance, o(t,z) = ((p — 1)|t| + Alz|*)~/®=D for some A,k > 0,
which blows up at ¢ = 0, and solve the nonlinear Schrodinger equation in H'!(R”) by setting
u(t,z) = p(t,z) + v(t, z) with v(0,2) = 0. However, in [7], the blow up for ”small” initial
data was not considered. Also, in their argument, the condition 3 < p was assumed. We extend
this restriction to 2 < p by somewhat sophisticated nonlinear estimate as well as the coefficient
of nonlinearity is generalized as in (2). For another progress on the large-data-blow-up, we
refer to [3, 10]. We will not consider N-dimensional problem since the p must be restricted
into p < 14 2/N and the ¢(t,z) = O(|t|~*/®=1) admits a non-integrable singularity if
N > 2.

2. BLOWING-UP PROFILES

We expect that the blow-up of the solutions is caused by the nonlinearity, and so the disper-
sion associated with —%8% does not work so strongly just before the blowing-up time. This
observation suggests that the blowing-up profile is subject to the ordinary differential equation

10pp(t,x) = ()\+i/$)|<p(t,x)|p71<p(t,:v). )

For (4), we impose an initial data ¢(—1,z) = ¢_1(z) at each x € R, where ¢_1 satisfies

(A)The assumption on p_1:
(A.1) The p_; € C§°(R) is real valued.
(A2) 0< g 1(x) < (k(p— 1))~V @=,
(A3) p_1(x) = (k(p —1))~®=V if and only if 2 = 0.
(A4) p_1(z) = (k(p — 1))~ YD1 — 22NYP-D for |z] < 1/2, where N > 0 is
sufficiently large integer.
(A5) p_1(x) < @_1(1/2) for x| > 1/2.
The ODE in (4) is easy to slove. In fact, by (4), we see that

el (t,2)|* = 26lp(t, )P,
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which yields
ail(t, o) = —k(p - 1). )
Integrating (5) from —1 to ¢ < 0, we have
_ lo—1(z)] ) (6)
{1=8(p = Dlpoa(@p1( + 13/

Substitute (6) into the (¢, 2)[P~! on the right hand side of (4). Then we notice that it is a
standard first order ODE of (¢, ), and we obtain

lp(t, =)

olt.2) = (o) {1 - wp - DT @+ D) T ™

We call p(t, z) in (7) the blowing-up profile. By the assumption (A) on ¢_1, the (¢, x) blows
up at ¢ = 0, and, precisely speaking, limq [¢(t,0)] = oo occurs but |p(0,z)] < oo for
x # 0. The condition (A.4) suggests that the graph of ¢_j(x) is quite flat around z = 0,
which guarantees that the blowing-up rates of 9,¢(t, ) and higher derivatives do not violate
the integrability with respect to ¢ around ¢ = 0 when 2 < p. We will see, without proof, the
detail on (¢, z) in next lemma.

Lemma 2.1. Let ¢_1 be such as defined in the assumption (A), and let j be an integer sat-
isfying 0 < j < N. Then there exists some C; > 0 such that the blowing-up profile (7)
satisfies

o(t, )] < Cyfe D3/ ®
foranyt € (—1,0).

3. A SOLUTION AROUND THE BLOWING-UP PROFILE

We will construct a solution to (1) locally in negative time, which asymptotically tends to
o(t,z) as t T 0. To this end, we write u(t,z) = @(t,x) + v(t,z). Then the equation that
v = v(t, x) satisfies is

i = —10%0 — 1020 + (A + ik) (N (¢ +v) — N(p)), ©)
v(0,z) =0,

where V' (u) = |u[P~1u. One may first suppose to apply the contraction mapping priciple to (9)
via Duhamel’s priciple. But this approach will not work so well, since the nonlinear estimate
such as

V(g +0) = N(o)] < CllelP ™" + [Pl

contains the non-integrable singularity on |¢[P~1 = O(|¢|™!) around ¢t = 0. Thus we need
to apply another approach so called the energy method. To derive later a decay estimate of
|u(t, )l L2r) as t — —oo, we must solve (9) in the weighted L? space. In this section, we
have the next proposition.
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Proposition 3.1. Let 2 < p, and let \, k satisfy (2). Then, for some Ty < 0, there exists a
unique solution v = v(t, x) to (9) such that

v € C([To, 0); H'(R)) N C* ([T, 0); H™'(R)), (10)
v € C([Ty, 0]; L*(R)). (1n

Furthermore the solution satisfies
ot 2w < CIE*, 1020t )l 2@y < ClH*™, (12)

where g =1—-1/(p—1)—2/(2N) >0anda; =1—-1/(p —1) —3/(2N) > O with N
defined in (A.4).

4. PROOF OF THEOREM 1.1

We need to prolong the solution u = ¢+ v backward in negative time. It is easy to guess that
the size of the solution tends to 0 as ¢ — —o0, since the nonlinear amplification (i.e., k > 0)
works as the dissipation in negative time direction. However this observation fails when 3 < p
since the dispersion caused by —(1/2)9? turns down the nonlinearity. Hence the condition
p < 3is required to ensure lim;—, o [|u(t)||L2(r) = 0.

Proposition 4.1. Let 2 < p < 3 and \, k satisfy (2). Let u(Ty,-) € HY(R) and zu(Tp,-) €
L?(R). Then the solution u = u(t, ) to (1) exists globally in negative time. Furthermore we
have
(log t))~1/* (p=3),
[t )22y < C{ @A -D-1/2) (3 < p < 3) (13)

fort € (—o0,Tp).

Proposition 4.1 is related with the decay estimate of solutions. Such a problem has been of
interest for dissipative nonlinear Schrodinger equations (DNLS). Shimomura [15] firstly de-
rived an L°°-decay of small-amplitude-solutions to DNLS with a cubic nonlinearity. It was
extended to the sub-critical nonlinearity [12], to the large initial data [9, 11] and to the higher
space dimension [2, 4, 5, 6]. The L2-decay of solutions has been considered in [8, 13, 14]. We
are now in the position to prove Theorem 1.1.

Proof of Theorem 1.1 By Proposition 3.1, there exists a solution to (1) in [Ty, 0] such as
u(t,z) = p(t,z) + v(t, z) where ¢(t, ) denotes a blowing-up profile determined in § 2 and
v(t, z) satisfies v(0,z) = 0. Since u(Tp, ) € H'(R) and zu(Tp,-) € L*(R), Proposition 4.1
is applied, and so we have a solution such that lim;—, o [|u(t)||2(r) = 0. This means that,
for any p > 0, there exists some 7 < 0 such that |[u(7,")|[z2®) < p. Take u(r,z) = ug(z)
as an initial datum of (1), and consider the positive time direction. Then, from the translation-
invariance of (1) with respect to ¢ and the uniqueness of the solution in H*(R), it follows that
the solution u blows up at some 7% (= |7|). O
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