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ABSTRACT. We consider the existence of blowing-up solutions to some Schrödinger equations
including nonlinear amplification. The blow-up is considered in L2(R). Even though initial
data are taken so small, there exist some solutions blowing-up in finite time. The theorem in
this paper is an extension of Cazenave-Martel-Zhao’s result [7] from the point of making the
lower bound of power of nonlinearity extended and from the point of ensuring that blowing-up
solutions exist even for small initial data.
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1. INTRODUCTION

We consider the Cauchy problem of a nonlinear Schrödinger equation:
{

i∂tu = −1
2∂

2
xu+ (λ+ iκ)|u|p−1u,

u(0, x) = u0(x),
(1)

where the complex-valued unknown function u = u(t, x) is defined on (t, x) ∈ [0, T ) × R1.
In the nonlinearity, the power satisfies 2 < p ≤ 3 and the coefficients λ, κ ∈ R satisfy

κ > 0, (p− 1)|λ| ≤ 2
√
p κ. (2)

In particular, the positivity of κ in (2) implies that the nonlinearity affects as an amplification.
To see it, we refer to the idea of Zhang [16]. If the region of x is a bounded interval I and
Dirichlet boundary condition is imposed, then it is easy to show that, for u0 ∈ L2(R) and
u0 �= 0, the solution to (1) blows up in finite time. In fact, we have

d‖u(t)‖2L2(I)

dt
= 2Re(u(t), ∂tu(t))L2(I)

= 2κ‖u(t)‖p+1
Lp+1(I)

,
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where (f, g)L2(I) =
∫
I f(x)g(x)dx is the usual L2-inner product. Applying Hölder’s inequal-

ity : |I|(p−1)/2‖u(t)‖p+1
Lp+1(I)

≥ ‖u(t)‖p+1
L2(I)

where |I| denotes the size of the interval, we see
that

d‖u(t)‖2L2(I)

dt
≥ 2κ|I|−(p−1)/2‖u(t)‖p+1

L2(I)
.

Solving this differential inequality, we have

‖u(t)‖L2(I) ≥
‖u0‖L2(I){

1− κ(p− 1)|I|−(p−1)/2‖u0‖p−1
L2(I)

t
}1/(p−1)

,

and we know that ‖u(t)‖L2(I) blows up in finite time. However, this kind of estimate holds only
in the case that x belongs to the bounded interval. Once the region becomes unbounded, the
dispersion associated with −1

2∂
2
x will work so that the nonlinear amplification is suppressed,

and it is difficult to presume that the nonlinear amplification surely generates a blowing-up
solution. Actually when 3 < p and u0 is sufficiently small in H1(R) with xu0 ∈ L2(R) also
small, the solution to (1) exists globally in time. This is because |u(t, x)|p−1 ∼ Ct−(p−1)/2 is
integrable for large t, and the nonlinearity does not affect to the behavior of the solution. This
observation suggests that, if we expect the blow-up for a small initial data, it is necessary to
assume p ≤ 3.

Our goal is to obtain blowing-up solutions to (1) even though the smallness is assumed on
the initial data.

Theorem 1.1. Let 2 < p ≤ 3. Also let λ and κ satisfy (2). Then, for any ρ > 0, there exists
some initial datum u0 ∈ L2(R) such that

(i) ‖u0‖L2(R) < ρ,
(ii) the solution u to (1) with u0 as the initial datum satisfies

lim
t↑T∗

‖u(t)‖L2(R) = ∞ (3)

for some T ∗ > 0.

Theorem 1.1 asserts the existence of a blowing-up solution only for some special small initial
data. It remains open whether any small initial data except for u0 = 0 give rise to the blow-
up. However, Cazenave-Correia-Dickstein-Weissler [1] proved that any nontrivial solution in
H1(R) is estimated from below with a function of t growing-up to ∞ as t → ∞ – the solution
may either blow up in finite time or grow up at t = ∞.

In Theorem 1.1, the lower bound of p is required for the technical reason that the blowing-up
profile must be integrable around the blowing-up time with respect to t. The upper bound of
p is required to ensure the existence of blowing-up solution for small initial data. Precisely



7

EXISTENCE OF A BLOWING-UP SOLUTION TO NLS

speaking, we will first construct a blowing-up profile, construct a solution to (1) which ap-
proaches to the profile while t ↑ T∗, and extend it backward in time. In order to guarantee the
decay of the solution in the negative time-direction, the assumption of p ≤ 3 is required.

The construction of a blowing-up solution to some Schrödinger equation with nonlinear
source term was considered by Cazenave-Martel-Zhao [7]. They treated the N -dimensional
nonlinear Scrödinger equation :

i∂tu = −∆u+ i|u|p−1u,

where (t, x) ∈ R × RN and ∆ =
∑N

j=1 ∂
2
xj

. In their idea, a profile ϕ(t, x) of the blow-up
solution was firstly determined, which is subject to the ODE :

i∂tϕ(t, x) = i|ϕ|p−1ϕ(t, x).

They employed, for instance, ϕ(t, x) = ((p − 1)|t| + A|x|k)−1/(p−1) for some A, k > 0,
which blows up at t = 0, and solve the nonlinear Schrödinger equation in H1(RN ) by setting
u(t, x) = ϕ(t, x) + v(t, x) with v(0, x) = 0. However, in [7], the blow up for ”small” initial
data was not considered. Also, in their argument, the condition 3 ≤ p was assumed. We extend
this restriction to 2 < p by somewhat sophisticated nonlinear estimate as well as the coefficient
of nonlinearity is generalized as in (2). For another progress on the large-data-blow-up, we
refer to [3, 10]. We will not consider N -dimensional problem since the p must be restricted
into p ≤ 1 + 2/N and the ϕ(t, x) = O(|t|−1/(p−1)) admits a non-integrable singularity if
N ≥ 2.

2. BLOWING-UP PROFILES

We expect that the blow-up of the solutions is caused by the nonlinearity, and so the disper-
sion associated with −1

2∂
2
x does not work so strongly just before the blowing-up time. This

observation suggests that the blowing-up profile is subject to the ordinary differential equation
:

i∂tϕ(t, x) = (λ+ iκ)|ϕ(t, x)|p−1ϕ(t, x). (4)

For (4), we impose an initial data ϕ(−1, x) = ϕ−1(x) at each x ∈ R, where ϕ−1 satisfies

(A)The assumption on ϕ−1:
(A.1) The ϕ−1 ∈ C∞

0 (R) is real valued.
(A.2) 0 ≤ ϕ−1(x) ≤ (κ(p− 1))−1/(p−1).
(A.3) ϕ−1(x) = (κ(p− 1))−1/(p−1) if and only if x = 0.
(A.4) ϕ−1(x) = (κ(p − 1))−1/(p−1)(1 − x2N )1/(p−1) for |x| < 1/2, where N > 0 is

sufficiently large integer.
(A.5) ϕ−1(x) ≤ ϕ−1(1/2) for |x| ≥ 1/2.
The ODE in (4) is easy to slove. In fact, by (4), we see that

∂t|ϕ(t, x)|2 = 2κ|ϕ(t, x)|p+1,
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which yields

∂t|ϕ(t, x)|−(p−1) = −κ(p− 1). (5)

Integrating (5) from −1 to t < 0, we have

|ϕ(t, x)| = |ϕ−1(x)|
{1− κ(p− 1)|ϕ−1(x)|p−1(t+ 1)}1/(p−1)

. (6)

Substitute (6) into the |ϕ(t, x)|p−1 on the right hand side of (4). Then we notice that it is a
standard first order ODE of ϕ(t, x), and we obtain

ϕ(t, x) = ϕ−1(x)
{
1− κ(p− 1)ϕp−1

−1 (x)(t+ 1)
}(−1+iλ

κ
) 1
p−1

. (7)

We call ϕ(t, x) in (7) the blowing-up profile. By the assumption (A) on ϕ−1, the ϕ(t, x) blows
up at t = 0, and, precisely speaking, limt↑0 |ϕ(t, 0)| = ∞ occurs but |ϕ(0, x)| < ∞ for
x �= 0. The condition (A.4) suggests that the graph of ϕ−1(x) is quite flat around x = 0,
which guarantees that the blowing-up rates of ∂xϕ(t, x) and higher derivatives do not violate
the integrability with respect to t around t = 0 when 2 < p. We will see, without proof, the
detail on ϕ(t, x) in next lemma.

Lemma 2.1. Let ϕ−1 be such as defined in the assumption (A), and let j be an integer sat-
isfying 0 ≤ j ≤ N . Then there exists some Cj > 0 such that the blowing-up profile (7)
satisfies

|∂j
xϕ(t, x)| ≤ Cj |t|−1/(p−1)−j/(2N) (8)

for any t ∈ (−1, 0).

3. A SOLUTION AROUND THE BLOWING-UP PROFILE

We will construct a solution to (1) locally in negative time, which asymptotically tends to
ϕ(t, x) as t ↑ 0. To this end, we write u(t, x) = ϕ(t, x) + v(t, x). Then the equation that
v = v(t, x) satisfies is

{
i∂tv = −1

2∂
2
xv − 1

2∂
2
xϕ+ (λ+ iκ)(N (ϕ+ v)−N (ϕ)),

v(0, x) = 0,
(9)

where N (u) = |u|p−1u. One may first suppose to apply the contraction mapping priciple to (9)
via Duhamel’s priciple. But this approach will not work so well, since the nonlinear estimate
such as

|N (ϕ+ v)−N (ϕ)| ≤ C(|ϕ|p−1 + |v|p−1)|v|

contains the non-integrable singularity on |ϕ|p−1 = O(|t|−1) around t = 0. Thus we need
to apply another approach so called the energy method. To derive later a decay estimate of
‖u(t, ·)‖L2(R) as t → −∞, we must solve (9) in the weighted L2 space. In this section, we
have the next proposition.
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Proposition 3.1. Let 2 < p, and let λ, κ satisfy (2). Then, for some T0 < 0, there exists a
unique solution v = v(t, x) to (9) such that

v ∈ C([T0, 0];H
1(R)) ∩ C1([T0, 0);H

−1(R)), (10)

xv ∈ C([T0, 0];L
2(R)). (11)

Furthermore the solution satisfies

‖v(t, ·)‖L2(R) ≤ C|t|α0 , ‖∂xv(t, ·)‖L2(R) ≤ C|t|α1 , (12)

where α0 = 1 − 1/(p − 1) − 2/(2N) > 0 and α1 = 1 − 1/(p − 1) − 3/(2N) > 0 with N
defined in (A.4).

4. PROOF OF THEOREM 1.1

We need to prolong the solution u = ϕ+v backward in negative time. It is easy to guess that
the size of the solution tends to 0 as t → −∞, since the nonlinear amplification (i.e., κ > 0)
works as the dissipation in negative time direction. However this observation fails when 3 < p
since the dispersion caused by −(1/2)∂2

x turns down the nonlinearity. Hence the condition
p ≤ 3 is required to ensure limt→−∞ ‖u(t)‖L2(R) = 0.

Proposition 4.1. Let 2 < p ≤ 3 and λ, κ satisfy (2). Let u(T0, ·) ∈ H1(R) and xu(T0, ·) ∈
L2(R). Then the solution u = u(t, x) to (1) exists globally in negative time. Furthermore we
have

‖u(t, ·)‖L2(R) ≤ C

{
(log |t|)−1/3 (p = 3),

|t|−(2/3)(1/(p−1)−1/2) (2 < p < 3)
(13)

for t ∈ (−∞, T0].

Proposition 4.1 is related with the decay estimate of solutions. Such a problem has been of
interest for dissipative nonlinear Schrödinger equations (DNLS). Shimomura [15] firstly de-
rived an L∞-decay of small-amplitude-solutions to DNLS with a cubic nonlinearity. It was
extended to the sub-critical nonlinearity [12], to the large initial data [9, 11] and to the higher
space dimension [2, 4, 5, 6]. The L2-decay of solutions has been considered in [8, 13, 14]. We
are now in the position to prove Theorem 1.1.

Proof of Theorem 1.1 By Proposition 3.1, there exists a solution to (1) in [T0, 0] such as
u(t, x) = ϕ(t, x) + v(t, x) where ϕ(t, x) denotes a blowing-up profile determined in § 2 and
v(t, x) satisfies v(0, x) = 0. Since u(T0, ·) ∈ H1(R) and xu(T0, ·) ∈ L2(R), Proposition 4.1
is applied, and so we have a solution such that limt→−∞ ‖u(t)‖L2(R) = 0. This means that,
for any ρ > 0, there exists some τ < 0 such that ‖u(τ, ·)‖L2(R) < ρ. Take u(τ, x) = u0(x)
as an initial datum of (1), and consider the positive time direction. Then, from the translation-
invariance of (1) with respect to t and the uniqueness of the solution in H1(R), it follows that
the solution u blows up at some T ∗(= |τ |). �
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