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Abstract. Plastic wastes rise annually as a result of the growing demand for 
synthetic materials, which contributes to their manufacture. There are four main 
ways to recycle waste polymer, with thermal treatment for fuel being the most 
favorable to the environment. In this study, the thermal processing of plastic 
wastes was investigated with an anaerobic pyrolysis apparatus, and their thermal 
degradation was evaluated by using the thermogravimetric apparatus. 
Additionally, the elemental composition was determined by an elemental 
analyzer, n-alkanes were identified by gas chromatography with flame ionization 
detection/electron capture detector (GC-FID/ECD), and the hydrocarbons 
functional group was analyzed by Fourier transform infrared 
spectroscopy (FTIR). We pyrolyzed the most widely utilized polymers, including 
polypropylene (PP), low-density polyethylene (LDPE), and high-density 
polyethylene (HDPE), at temperatures as elevated as 500°C to obtain plastic 
pyrolysis oil (PPO). Then PPO was distilled into initial boiling point (IBP)-200°C 
(gasoline-like fuel), 200-350°C (diesel-like fuel), and over 350°C fraction 
(residue), and the technical features of each fraction were compared to the MNS 
0217:2006 and MNS 6861:2020 standards. Diesel-like fuel (DLF) derived from 
LDPE consists of the n-alkane hydrocarbons with C8–C23 identified by flame 
ionization detection (FID) data; C10–C17 represented more than 80% of them. 
The hydrotreatment results revealed that the diesel-like fraction's nitrogen (N) 
and sulfur (S) amounts could have reduced from 0.06% to 0.01% and from 0.78% 
to 0.29%, respectively. In conclusion, it could be done to generate a product with 
a more stable hydrocarbon content from plastic wastes for fuel. 

Keywords: Plastic wastes, thermal processing, plastic pyrolysis oil, 
gasoline, and diesel-like fuel, hydrogenation process, n-alkanes. 

1 Introduction  

     A wide range of affordable, lightweight, and readily usable items that are necessary 
for daily life can be produced from plastic. The rate at which these products are 
manufactured has increased by nearly 9 percent annually [1].  

The consumption of global plastic was estimated to be 430 million tons in 2019; 
statistical analysis indicates that this amount is expected to rise in the future, expanding 
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by 10 million tons per year to 460 million tons by 2023 [2]. Only 10% of these mass-
produced material wastes are recycled, 14% are incinerated, and the rest end up in 
landfills and the environment  [3], [4]. Widespread pollution from plastic in terrestrial 
and marine ecosystems is one of the world's most critical challenges because of 
inadequate management of plastic waste recycling [5], [6]. Plastic recycling processes 
fall into four categories: primary, secondary, tertiary, and quaternary. Above them, the 
third recycling method or tertiary category is thermochemical recycling, which is the 
most promising approach to waste treatment [7], [8], [9], [10].  

Thermal processing of plastics primarily yields wax, solvents, oil, coke, or gases 
[11]. There are several benefits to using processed materials in fuel and gasoline 
operations, including the ability to recycle waste into useful products, increase oil 
reserves, and lessen the negative effects of plastic waste [12]. Recent studies have 
explored the possibility of obtaining fuel and gasoline by distilling the plastic pyrolysis 
oil [13], [14], [15]. Through the thermal process of plastics, various types of catalysts 
are used to improve the quantity and quality of gasoline and diesel-like fuel. 
For instance, researchers Ch. Kassargy et al. blended 50:50 ratio a of polypropylene 
(PP) and polyethylene (PE) with USY zeolite catalyst at a 10:1 ratio and pyrolyzed at 
500 °C. Distilled gasoline-like fuel and diesel-like fuel obtained from blended plastic 
pyrolysis oil had a relatively high octane research octane number (RON = 89.8) and 
cetane number (45.1), respectively [16]. Likewise, V. L. Mangesh et al. pyrolyzed 
polypropylene with a metal catalyst (Ni-Mo) to produce a diesel-like fuel that matched 
EN590 standards (European diesel specifications) [17].  

The quality of the obtained fuel depends mainly on the properties of the catalyst and 
raw materials. According to past studies, polypropylene pyrolysis oil has greater 
physicochemical characteristics than other polymer types. It is also easier to convert 
polypropylene pyrolysis oil into diesel fuel because of having a lower carbon chain 
number of the hydrocarbon compounds than other polymer types [18]. Plastic pyrolysis 
oil mostly contains alkene, alkane, and aromatic hydrocarbons [17]. Alkenes are highly 
reactive hydrocarbons that are unstable, which makes them an unsuitable component 
of diesel fuel [19]. To obtain the fuel more stable, the hydrotreatment process is 
required [20].   

The process of hydrogen treatment of pyrolysis oil using sulfided NiMo/Al2O3 
catalyst strongly depends on the reaction conditions, and if the temperature is too low 
(180°C), it leads to an increment of char yield [21]. Therefore, utilizing this catalyst for 
2–6 hours at 300–350°C and 3–6 MPa of hydrogen pressure during the hydrotreatment 
process for PPO is more effective [17], [21], [22][23], [24]. The hydrogen processing 
method for improving the quality of raw materials is the most common method widely 
used in the processing of petroleum [25], biomass [26], coal [27], and other raw 
materials. However, the disadvantage of increasing the product's own cost after 
hydrogen treatment (hydrogen price 1.7–2.3 $/kg [28]) cannot be disregarded. So, the 
inclusion of each raw material in hydrogen processing is inefficient from an economic 
standpoint.  

In this research, the most widely used polymer materials of polypropylene (PP), 
high-density polyethylene (HDPE), and low-density polyethylene (LDPE), were 
pyrolyzed to obtain PPO, which could be used to produce gasoline and diesel-like fuel. 
We focused on the study of changes in the composition of hydrocarbons and other 
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elements by hydroprocessing only the diesel fraction of LDPE with the presence of Ni-
Mo/Al2O3 bi-metal catalyst, without including the PPO of each of the studied raw 
materials. The reasons behind this are as follows: 
 Most of the characteristics of gasoline and diesel fractions obtained by pyrolysis of 

HDPE and PP were near the technical parameters of standards. Researchers Dobó 
Z, Kecsmár G, Nagy G, et al. revealed that gasoline-like fractions of PPO obtained 
by pyrolysis of LDPE HDPE and PP were near to the standard of the commercial 
fuel the (EN228) standard tests [24].  

 Of the studied raw materials, only LDPE contained fuel contaminants such as 
nitrogen (N) and sulfur (S) in its products, hence its quantity had to be eliminated. 

 In the work of the aforementioned researchers, only PPO was employed in the 
catalytic treatment. The hydrogenation process of diesel fraction recovered from 
polymers in the presence of Ni-Mo/Al2O3 catalysts has not been extensively studied 
and data on them lacking. 

 Hydrotreating the target product would be economically feasible because 
hydrotreating PPO and all of its derived fractions has the drawback of increasing 
energy. 

2 Experimental 

2.1 Materials 

   
A-HDPE B-LDPE C-PP 

 

Figure 1. Materials of plastic wastes. 

Materials of plastic wastes used in our research; LDPE; -LDPE plastic bags,                     
HDPE; - bottles of milk, yogurt, juice, detergent, pills and vitamins, PP; -bags of 
cookies, chips, and chocolate, and disposable food containers. 
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2.2     Methods 

Thermal processing (pyrolysis) experiments were performed at the pyrolysis apparatus 
shown in Fig. 2. A thermogravimetric instrument (Hitachi TG/DTA 7300) was used to 
determine the optimal conditions for the decomposition of waste plastics. The elemental 
composition of plastic wastes and diesel-like fractions obtained LDPE was determined 
by an elemental analyzer (FLASH™ 2000), and n-alkanes of diesel-like fractions were 
assessed by GC-FID/ECD gas chromatography (Agilent 7890A), and the functional 
groups of hydrocarbons were detected by FTIR (Alpha II, Bruker, Germany). The PPO 
was distilled into three fractions: gasoline-like fuel (IBP–200°C), diesel-like fuel (200–
350°C), and residue (>350°C). The physical properties of each fraction were compared 
to MNS 6861:2020 and MNS 0217: 2006 (AI92) standards. 

 

 

Figure 2. Pyrolysis apparatus [29].   

2.3 Experimental procedures 

2.3.1 Sample preparation: The collected waste was cleaned and washed. Then 
materials were dried in sunlight for 24 hours. After that, the samples were 
cut to size <3-5mm2 and used for further thermal process. 

2.3.2 Pyrolysis experiment: The scheme of the pyrolysis apparatus is illustrated 
in Fig. 2. About 100 grams of plastic waste were put into the pyrolysis 
reactor. Tighten the coupling to attach the straight cooler to the reactor. After 
setting the temperature of the apparatus, it can be ready for thermal 
processing. The reactor held two liters in capacity. 

2.3.3 Hydrotreatment process: The hydrotreatment process was run with a 
catalyst and without a catalyst at 450°C for two and four hours under a 
hydrogen pressure of 5 MPa. The general scheme of the hydrotreatment 
process is shown in Fig. 3.  A commercial Ni-Mo/Al2O3 catalyst (Ni 3%, Mo 
15%) was used for the hydrotreatment process. About 5 g of diesel-like fuel 
obtained LDPE was charged into a batch-type micro-autoclave with an inner 
volume of 50 ml reactor, along with 1 wt.% Ni-Mo/Al2O3 catalyst and 1 
wt.% sulfur.  
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Figure 3. Scheme of hydrotreatment process 
 

3 Experimental results 
3.1. Results of ultimate and proximate analysis 

 

Table 1 summarizes the results of the ultimate and proximate analysis of HDPE, LDPE, 
and PP. 

Table 1. The ultimate and proximate analysis of plastic wastes. 
Feedstock Ultimate analysis (%)  Proximate analysis (%) 

C H O S N H/C VM*1 A FC*2 a M*3 

HDPE 85.03 14.14 0.83 0.00 0.00 1.99 99.28 0.72 - - 
LDPE 78.12 13.23 5.37 2.16 1.12 2.20 98.99 1.01 - - 

PP 84.36 15.02 0.62 0.00 0.00 2.14 99.51 0.49 - - 
*1 Volatile matter, *2 Fixed carbon, *3 Moisture  

acalculated by mass difference 
 
Table 1 illustrates, the elemental composition of the waste plastics consists mainly of 
carbon atoms, and amounts of them decreased in the order of HDPE> PP>LDPE. The 
hydrogen amount of plastic waste was examined at 13.23-15.02, and the highest result 
was revealed for PP. The H/C ratio measures the proportion of paraffins, and 
naphthenes to characterize hydrocarbon fuels, and aromatics indicating their calorific 
value [30]. Results of elemental analysis revealed that oxygen amount was 0.62-5.37% 
for samples, but sulfur and nitrogen amounts were 2.16% and 1.12% for LDPE, 
respectively. Some researchers [31], and [32] revealed the amount of 11.25% hydrogen, 
11.06% oxygen, 10.69% hydrogen, and 1.79% oxygen in the composition of LDPE, 
respectively. The research shows that the composition of elements varies depending on 
the purpose of raw materials. This is due to the amounts of sulfur, nitrogen, and oxygen 
included in various additives—which are used in diverse polymer production processes 
to improve plastic product quality and add color [33] [34] [35]. Proximate analysis 
revealed the content of volatile matter of plastic wastes was 98.99-99.51%. This 
indicates that the constituent parts of the polymer are almost entirely volatile 
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hydrocarbons (burnable), with a negligible ash content of 0.49-1.01% which can be 
explained by compounds containing non-volatile metals (Pb, Al, Ti, Zn, and others) 
added to its composition [36]. Thermochemical recycling is mentioned to be the most 
promising plastic recycling technique in the introduction; it involves thermally 
liquefying waste plastic in an anaerobic atmosphere to produce PPO that can be used 
as fuel in the future [7]–[10].  
     Thus, thermogravimetric analysis (TGA) analysis was carried out to determine the 
optimal conditions for the thermal decomposition of the plastic wastes, and the results 
are shown in the figure that follows. 
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Figure 4. TGA analysis of plastic wastes. 
 

     According to Fig. 4, with degradation temperature occurring from around 220 °C, 
about 95% of HDPE decomposed at around 508 °C When the temperature increased up 
to 410°C, the first stage of LDPE degradation which began at about 280°C—achieved 
over 10% degradation. The second thermal degradation of LDPE began at around 400 
°C, reached 50% degradation at 460 °C, and reached maximal decomposition (95%) at 
about 492°C (Fig. 4). PE is a long-chain material that degrades thermally via the 
random chain-breaking mechanism at comparatively higher temperatures [37]. Based 
on the PP thermal breakdown curve, approximately 95% of it underwent decomposition 
at 480°C, with the decomposition beginning at 210°C. Jung et al. [38] suggest that the 
tertiary carbons in the PP half-carbon chain enhance the carbocation process during 
thermal degradation, potentially causing it to degrade at a lower temperature. 
Additionally, according to Chandrasekaran et al. [39], differences in the TGA curves 
of different plastic feedstocks are caused by their structures and subsequent degradation 
mechanisms. Maximum degradation was shown at temperatures between 460°C and 



Thermal processing of plastic wastes for fuel 

500°C, as determined by TGA analysis of all the feedstocks. Numerous studies have 
conducted TGA analyses of plastic wastes [40], and our  TGA results precisely 
correspond to their values.  Section 3.2 provides a summary of the experiment findings 
regarding the yield and characteristics of plastic waste pyrolysis. 

3.2. The yield of pyrolysis products and distilled fractions of PPO, and 

technical parameters of distilled fractions 

Numerous studies are being conducted on the fuel processing of plastic waste, with 
the majority of these studies focused on the improvement of the liquid yield by plastic 
pyrolysis  [41], [42], [43], [44]. The pyrolysis products of the waste polymers primarily 
consisted of PPOs (65.3-70.04%), while gas products were presented  (29.24-34.05%). 
Fig.5 presents the results of the yield of pyrolysis products for plastic wastes. 

 
 

Figure 5. The yield of pyrolysis products for plastic wastes. 
 

The yield of plastic pyrolysis products varies depending on the reactor type, its 
characteristics, and the desired output; some researchers could increase the PPO to 
93%. [1]. However, there are relatively few research works that determine how the fuel 
produced by plastic processing is suitable for car engines. Researcher Bukkarapu et.al 
[45] investigated the possibility of using PPO obtained by plastic pyrolysis for diesel 
engines. Researchers found the following: obtained PPO has higher density and 
viscosity than commercial diesel fuel which lowers engine thermal efficiency, and 
emits more carbon monoxide when fuel burns. As a result, it cannot be used in the 
engine directly. However, when utilized in a blend of 80% PPO and 20% diesel fuel, it 
is suitable for the usage of diesel engines [45], [46]. However, direct mixing is 
inefficient because burning this blended fuel increased NOx emissions by 25% and CO 
emissions by 5%. [46]. The reason for this is explained by the researcher Bukkarapu et 
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al [45] due to the high ratio of carbon to hydrogen (H/C) in the combustion fuel in the 
internal combustion engine system and the low oxygen supply, resulting in a long 
ignition time of the fuel [47].   

We distilled PPOs into three fractions gasoline-like fuel (IBP-2000C fraction), 
diesel-like fuel (200-3500C fraction), and the residue (above 3500C fraction), and the 
yield of fractions is shown in Fig. 6.  
 

 
Figure 6. The yield of distilled fractions of PPOs obtained by plastic wastes. 

 
We can see that the yield of gasoline-like fuel was nearly similar about 34.97-39.4% 

for different feedstocks, the yield of the diesel fraction was the highest for PP (40.26%), 
and the lowest result was for HDPE 22.7%. The yield of residue fraction decreased in 
the sequence of HDPE>LDPE>PP. From the yield of the fractions obtained from the 
PPO of HDPE, it can be seen that the content of gasoline fraction and residual fraction 
occupies the majority (77.3%), which reveals more suitable for processing gasoline and 
furnace fuel. Researchers J. M. Escola et al. found that the diesel fraction had a yield 
of HDPE-34%, LDPE-32%, and PP-28, and the gasoline fraction had a yield of HDPE-
39%, LDPE-44%, and PP-58% [47].  
Table 2 presents the technical parameters of the gasoline-like fuel of PPOs derived from 
different plastic wastes.  

As shown in Table 2, octane numbers of gasoline-like fuel were 84-89. Some 
researchers determined that the octane numbers of gasoline-like fuel obtained by PPOs 
were HDPE-80.6, LDPE-80.5, and PP-93.4 respectively [48]. Also, researcher 
Kassargy C et al. found out the octane number of the gasoline fraction obtained by 
pyrolysis of PP and PE-1:1 was 89.9 [49]. 
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Table 2. Technical parameters of the gasoline-like fuel or IBP- 200°C fraction obtained by 
different plastic wastes. 

Technical parameters Units MNS 0217 : 2006 
(RON92) 

IBP-2000C fraction of;  
HDPE LDPE PP 

Research octane number, (RON) - 92 (min) 86 84    89 
Motor octane number, (MON) - 83 (min) 82 72    78 
Density @ 15°C g/cm3 725-780 782 740 730 
Distillation data (summer) 
- initial boiling point 
- distillation temperature T10  
- distillation temperature T50 
- distillation temperature T90 

 
°C 
°C 
°C 
°C 

 
35 (min) 
75 (max) 
120 (max) 
190 (max) 

 
58 
95 
134 
194 

 
38 
78 
123 
182 

 
  32 
  73 
  108 
  175 

Final boiling point (FBP) °C 215 (max) 221 218  210 
Distillation residue % vol. 2 (max) 2.2 2.8   2.1 

     
Their outcomes were quite similar to our results. The gasoline fraction obtained by 
thermal processing of polypropylene (PP) has a relatively high octane number [50]. The 
high octane number of gasoline-like fuel of polypropylene reflects its branched 
structure. The prevailing hydrocarbon (58.4 mass %) is 2,4-dimethyl-1-heptene for the 
PP distillate [51]. Mainly 1-alkenes are carriers of the octane level in the case of naphtha 
fractions obtained from polyethylenes [48]. The density of the gasoline fraction 
obtained from the investigated plastics was increased in the order PP<LDPE<HDPE 
and their value ranged from 730-782g/cm3. It can be seen the densities of the gasoline-
like fuel were within the limits of MNS 0217: 2006 standard for PP and LDPE. This 
can be explained that there are lower hydrocarbon chains in the compounds generated 
during the decomposition of PP and LDPE than in HDPE. 
We also determined the technical parameters of the diesel-like fuel of different PPOs, 
and compared it with commercial diesel fuel standard (MNS 6861:2020). The results 
are summarized in Table 3. 

 

Table 3. Technical parameters of the diesel-like fuel or 200-350°C fraction obtained by 
PPOs of different plastic wastes. 

Technical parameters  Units MNS 
6861:2020 

(winter) 

200-3500C fraction of; 
HDPE LDPE  PP 

Cetane number  - 45 45 43 42 
Distillation data 
Distillation temperature  T50, max   
Distillation temperature  T96, max   

 
°C 
°C 

 
280(max) 
340(max) 

 
281 
344 

 
288 
355 

 
278 
346 

Density @25°C  kg/m3 860 820 814 802 
Viscosity @ 20 °C сСт 3-6 4.09 5.85 5.66 
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     Table 3 shows that the cetane numbers of the diesel-like fuel or 200-350°C obtained 
by distillation of plastic wastes were 42-45 which of them was near to the MNS standard 
specification. Combustion properties of diesel fuel are described by the cetane [48]. 
Some researchers found that diesel fractions produced by the processing of plastics 
generally have high cetane numbers like 51.6 and 84 [52]. The high cetane number is 
represented by low aromatic content in fuel [53]. As can be seen in Fig. 7, the absorption 
of functional groups of chemical components in the composition of distilled fractions 
obtained by PP feedstock by FTIR. 
 

3500 3000 2500 2000 1500 1000 500

Tr
an

sm
itt

an
ce

,%

Wavenumber, cm-1

IBP - 200°C
200-350°C
PPO 

2930

2850

1460

1645
1375 1175

910

720

1280

 
Figure 7.  FT-IR analysis of polypropylene 

 
     Fig.7 shows the compared FT-IR results of PPO, gasoline-like fuel, and diesel-like 
fuel. The strong peaks at 2930 cm−1 and 2850  cm−1 were attributed to the presence of 
methylene groups (CH2) [54]. The peak at 1460 cm−1 was attributed to the asymmetric 
deformation vibrations of CH2 and CH3  groups. In addition, the peak at 1375 cm-1 was 
attributed to the bending vibration of CH3 groups [55]. The weak peak located at 1645 
cm-1 indicated the presence of alkene [54]. Many papers confirmed the strong peak at 
720 cm-1 was attributed to aromatic stretching vibration [56], [57]. The vibration 
located at 910 cm-1 was attributed to the di-substituted benzene.  From FTIR results, it 
was confirmed that the pyrolysis products of waste plastic were the main alkane and 
arenes.    
     Results of elemental analysis revealed  LDPE contains sulfur (2.16%) and nitrogen 
(1.12%) atoms. Section 3.3 provided further details on the process of catalytic 
hydrotreatment process of the diesel-like fuel obtained PPO of LDPE to eliminate the 
components of sulfur and nitrogen. 
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3.3. Hydrotreatment process of diesel-like fuel derived from LDPE 

     Diesel-like fuel derived from LDPE was further hydrogenated for two and four 
hours in the presence of Ni–Mo/Al2O3 (Ni 3%, Mo 15%) catalyst. Sulfur and nitrogen 
heteroatoms must be removed from the fuel's composition to obtain high-quality fuel 
[58]. The following Figures illustrate the results of the hydrotreatment process with the 
catalyst. We can see the appearance of fractions, and changes in the distribution of n-
alkane hydrocarbons in Fig. 8 and, 9 respectively.  
 

 
 
 
 
 
 
 

 
 Figure 8. The appearance of fractions  

(results of hydrotreatment process with the catalyst). 
 

As shown in Fig. 8, it was evident that the color of DLF derived from LDPE varied 
significantly after the hydrotreatment process. 

 
 

Figure 9. The distribution of n-alkane hydrocarbons of diesel-like fuel derived 
from LDPE (results of hydrotreatment process with the catalyst). 

 
     Diesel-like fuel obtained by pyrolysis of LDPE detected hydrocarbons with carbons 
ranging from C8 to C23. The majority (almost 80%) of the n-alkane hydrocarbons 
detected were of C10–C17 hydrocarbons. After hydrotreatment with Ni-Mo/Al2O3 for 
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four hours, the amount of C8–C15 carbon increased from 68.5% to 80%, but the 
distribution of C16–C23 decreased by 11.5%. According to the study of Bayanmunkh M, 
et al., petroleum atmospheric residue (>350°C) was hydrotreated using a catalyst of Ni-
Mo/Al2O3, and the yield IBT-350° was increased from 33.5% to 38% [59]. The 
majority of the composition of diesel fuel is occupied by aliphatic hydrocarbons with 
C10H20-C15H28, their content is about 75%, while the remaining 25% consists of styrene 
and benzene derivatives [60]. Therefore our findings indicate that the composition of 
diesel fraction hydrotreated was improved nearly to the composition of standard diesel 
fuel. 
     Fig.9 illustrates comparable results of elemental analysis for DLFs. 
 

 
Figure 10. Results of elemental analysis for DLFs. 

 
     After the hydrotreatment process in the presence of Ni-Mo/Al2O3 catalyst for 2-4 
hours, the elemental composition of PPO and DLF is shown in Fig. 10. It can be seen 
the carbon amount decreased from 84.6% to 77.9%, but hydrogen (H) atoms increased 
from 11.2% to 13.1% for PPO and DLF (4h), respectively. The sulfur content was 
defined as 0.2% in commercial fuel under the MNS 6861:2020 standard requirement. 
The sulfur (S) content of the diesel fraction obtained by pyrolysis of LDPE was 0.06%, 
which could be reduced to 0.01% after the catalyst hydrotreatment process. Also, the 
amount of nitrogen (N) atoms decreased from 0.78% to 0.29%. The inclusion of diesel 
fraction in the hydrotreatment process has many advantages, such as the removal of 
heteroatoms of sulfur and nitrogen in its composition, and the conversion of unsaturated 
hydrocarbons with high chemical activity into saturated hydrocarbons to make the 
composition of the fraction more stable. 
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4 Conclusion  

In this study, we pyrolyzed the most widely utilized polymers, including  PP, LDPE, 
and HDPE, at temperatures as elevated as 500°C to obtain plastic pyrolysis oil (PPO). 
Then PPO was distilled into IBP-200°C (gasoline-like fuel), 200-350°C (diesel-like 
fuel), and fractions over 350°C, and the technical parameters of each fraction were 
compared to the MNS 0217:2006 and MNS 6861:2020 standards. DLF derived from 
LDPE consists of the n-alkane hydrocarbons with C8–C23 identified by FID data; C10–
C17 represented more than 80% of them. The hydrogenation results for four hours 
indicated that the diesel-like fraction's nitrogen (N) and sulfur (S) amounts could have 
reduced from 0.06% to 0.01% and from 0.78% to 0.29%, respectively. In conclusion, 
it could be done to generate a product with a more stable hydrocarbon content from 
plastic wastes for fuel. 
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