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Abstract. The Ornstein-Zernike integral equation method has been employed

for a single-component hard sphere fluid in terms of the Percus-Yevick (PY)

and Martynov-Sarkisov (MS) approximations. The virial equation of state, excess

chemical potential and free energy have been computed in both approximations.

The excess entropy has been obtained with both thermodynamic relation and free

energy expression for reduced densities of 0.1 to 0.9. It has been shown that the

entropy values from thermodynamic relation in the MS approximation are better

than those from the PY approximation, especially for high densities, and presents

a reasonable comparison with available data in the literature, while the values

from free energy expression in both approximations are not only close to each

other, but also comparable to accurate ones.
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1 Introduction

In classical statistical physics the physical systems, such as a liquid can be modeled as

a spherical symmetric hard-sphere particle model or Lennard-Jones potentials [1, 2].

Theoretical investigations for the systems can be performed with various methods,

such as explicit approaches–Monte-Carlo or Molecular dynamics simulations [1], and

implicit approaches represented as an integral equation or a polarizable continuum

model methods [3]. An integral equation (IE) approach mentioned here is a mathematical

tool we use in our study. As an implicit approach, the IE method does not consider

the number of particles in the system which in turn may make a calculation cheap,

and a solution of the IE can give directly the correlation functions determining the

general structure of the system. A one-component, homogeneous system can be well

investigated with the Ornstein-Zernike (OZ) [4] IE theory combined with an appropriate

auxiliary equation.

In this work, our purpose is to obtain an excess entropy for single-component

hard-sphere fluid using the OZ IE approach combined with the Percus-Yevick [5] (PY)

and

Martynov-Sarkisov [6] (MS) approximations. To reach it, we will first compute a virial
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equation of state and along with it, we will obtain an excess chemical potential for the

system at equilibrium using an analytical expression based on the correlation function.

Using these two quantities, we will compute the excess entropy employing

a thermodynamic relation. We will also compute the excess Helmholtz free energy

using the analytical expression based on the correlation function, value of which is

equal to the excess entropy, but has a negative sign. We will compare our findings

for thermodynamic properties with available data in literature [7, 8]. Note that, to our

knowledge, the MS approximation has not been tested for this calculation, yet, even

though this problem had been considered in the past [7–9]. Therefore, we believe that

our findings in this work can be considered as some contribution to this area.

In Section 2, we will discuss the Ornstein-Zernike theory and thermodynamic

properties which we will compute. In Section 3 we present numerical results and their

discussions. In Section 4 the conclusion is given.

2 Theory

2.1 The Ornstein-Zernike equation

In statistical mechanics, structural properties for the liquids existing at equilibrium can

be obtained in terms of the integral equation formalism [3]. For a single-component

homogeneous system, the Ornstein-Zernike integral equation can be written in the form

h(r) = c(r) + ρ

∫
c(|r− r′|)h(r′)dr′ (1)

where h(r) and c(r) are the total and direct correlation functions, respectively, and ρ is

the density of the system.

In equation (1), the two correlation functions are unknown, therefore, it cannot be

solved directly. To solve this OZ equation (1), we need another equation that is solved

together with the OZ equation (1) in a self-consistent way. This required equation is

called a closure equation (relation) which may be written in the form

h(r) = exp[−βu(r) + γ(r)−B(r)]− 1, (2)

where u(r) is a pair potential for particles in the system; γ(r) = h(r) − c(r) is an

indirect correlation function; B(r) is a bridge function; β = 1/kBT where kB is the

Boltzmann’s constant and T is a temperature of the system. The radial distribution

function g can be defined as g(r) = h(r) + 1 as well.

An inter-particle interaction potential for the hard-sphere with a diameter σ can be

written in the form [2]

u(r) =

{
0, r ≥ σ

∞, r < σ.
(3)

The bridge functions we use in this work can be given in the forms:

B(r) =

{
ln(1 + γ)− γ, (PY) [5]√
1 + 2γ − γ − 1, (MS) [6].
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2.2 Thermodynamic quantities

Once we solve the OZ equation (1), we can have the correlation functions with which

we can compute thermodynamic properties for the system.

2.2.1 Virial equation of state

For the hard-sphere system, the virial equation of state can be written in the form [2]

βp

ρ
= 1 +

2π

3
ρσ3g(σ), (4)

where g(σ) is the contact value of the radial distribution function at (σ).

2.2.2 An excess chemical potential

The excess (e) chemical potential βμe can be computed with a following approximated

analytical expression

βμe ≈ ρ

∫ (1
2
h(r)2 − c(r)− 1

2
h(r)c(r)

)
dr

+ρ

∫ (
B(r) +

2

3
h(r)B(r)

)
dr. (5)

Note that this expression does not depend on an explicit form of the bridge function.

Therefore, we can use it for both approximations in this work. A derivation of this

expression can be found in Ref. [10].

2.2.3 An excess entropy

For the hard-sphere system in which internal energy is zero, the excess entropy Se/NkB
can be computed as the following thermodynamic relation [2]

Se

NkB
=

βp

ρ
− βμe − 1. (6)

In evaluating the expression (6), we use previously obtained values for the pressure and

excess chemical potential.

2.2.4 An excess Helmholtz free energy

The excess Helmholtz free energy can be computed with an analytical expression based

on the correlation function which can be derived from the Kirkwood charging formula
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[10]. For one-component bulk fluid consisting of particle N with density ρ, it can be

given in the form

βAe

N
=

ρ

2

∫
dr

(
1

2
h2 − c

)

+
1

2

1

8π3

∫
dk

[
ĉ+

1

ρ
ln |1− ρĉ|

]

+
ρ

2

∫
drgB

− ρ

2

1

8π3

1∫
0

dν

∫
dkB(γ̂(μĥ))ĥ. (7)

The indirect correlation function in the momentum space k in an formula (7) is given as

γ̂(νĥ) =
ρ(νĥ)2

1 + ρ(νĥ)
. (8)

3 Results and discussion

In this work we have done calculations for reduced densities: ρσ3 = 0.1 to 0.9. For high

density, such as, when ρσ3 ∼ 0.9, the hard-sphere system behaves like a fluid [1]. We

use the Picard iteration method to solve the OZ equation, in which the OZ equation (1)

is solved in the Fourier space while the closure equation (2) is solved in a coordinate

space. A number of grid points in length interval of [0, 16σ] is 215. The numerical

calculation has been done with an in-house Matlab [11] code. The numerical tolerance

for a root-mean-squared residual of the indirect correlation functions of successive

iterations was set at 10−8.

In 1 we have compared the values of the equation of states (EOS) and excess

chemical potential obtained from both the PY and MS approximations with available

data in Ref. [7], which was obtained in terms of the Carnahan and Starling (CS) EOS

calculation [8]. We note that the CS data [8] can be considered as ‘exact’ values [7]. For

higher densities, values for both quantities from the PY approximation are lower than

those from the MS approximation. The MS values are quite close to those obtained in

Ref. [8].

2 presents our findings for an excess entropy Se/NkB obtained with an equations

(6) and (7) (Se/NkB = −βAe/N ) from both approximations and their comparisons

with those of Refs. [7] and [8]. As expected, the largest deviations come from the

PY results (column 2) here, especially for high density, since values for both the PY

pressure and excess chemical potential are lower (1). Values (columns 4 and 5) obtained

in both approximations using the Kirkwood charging technique are not only close to

each other, but also comparable to accurate values shown in last column. Values from

Ref. [7] are obtained with the help of the hybrid-bridge function, which enables better

values than ours.
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Table 1. The βp/ρ and βμe as a function of ρσ3.

βp/ρ βμe

ρσ3 PY MS Ref. [8] PY MS Ref. [8]

0.1 1.24 1.24 1.2397 0.46 0.46 0.4637
0.2 1.55 1.55 1.03 1.03
0.3 1.95 1.96 1.9667 1.72 1.73 1.7468
0.4 2.48 2.50 2.58 2.62
0.5 3.17 3.23 3.2624 3.67 3.77 3.8068
0.6 4.09 4.23 5.09 5.27
0.7 5.32 5.61 5.7102 7.00 7.32 7.3593
0.8 7.00 7.58 7.7497 9.70 10.2 10.1525
0.9 9.33 10.4 10.7461 13.7 14.3 14.1052

Table 2. An excess entropy Se/NkB

Se/NkB (6) −βAe/N (7)

ρσ3 PY MS PY MS Ref. [7] Ref. [8]

0.1 −0.22 −0.22 0.22 0.22 −0.2240 −0.2241
0.2 −0.48 −0.48 0.47 0.47
0.3 −0.77 −0.77 0.75 0.75 −0.7790 −0.7801
0.4 −1.10 −1.12 1.08 1.09
0.5 −1.50 −1.53 1.47 1.49 −1.5414 −1.5444
0.6 −2.00 −2.04 1.94 1.97
0.7 −2.68 −2.71 2.54 2.61 −2.6851 −2.6491
0.8 −3.70 −3.60 3.34 3.43 −3.3824 −3.4028
0.9 −5.39 −4.87 4.49 4.58 −4.3555 −4.3591

When using thermodynamic relation (6), based on the results shown in 1 and 2 we

note that the MS approximation makes better calculations than the PY does. A reason

why this happens might be related to the fact that a correlation function from the MS

approximation is better than those from the PY approximation [12, 13]. Finally, note

that our results obtained are independent of the number of grid points and the length

interval employed.

4 Conclusion

In this work, we have implemented the Ornstein-Zernike integral equation theory with

the Percus-Yevick and Martynov-Sarkisov bridge functions for a single-component

hard-sphere system. Analytical expressions based on correlation functions which have

been obtained as a solution of the integral equation for an excess chemical potential

and an excess Helmholtz free energy have been tested. An excess entropy has been

computed with help of thermodynamic relation and excess free energy expression

obtained from the Kirkwood charging technique, and has been compared available

accurate data. When thermodynamic relation is used, it has been shown that
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the Martynov-Sarkisov approximation does work better than the Percus-Yevick

approximation in which the integral equation can have a closed-form solution [9], and

its values are close to accurate data. In both approximations, for excess entropy an

excess free energy expression presents comparable values to accurate ones. Note that it

is better to use well-approximated bridge functions, such as hybrid or pressure-consistent

bridge approximations [7] to obtain well-consistent data from the integral equation

method.
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