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Abstract. This paper reports on the progress of the liquid-solid phase transition 
modeling of water in open channel flow by using the lattice Boltzmann method 
with the immersed boundary modification. The phase transition in a fluid flow 
has a moving interface between the liquid and solid state, which leads 
complicated treatments in existing numerical models. By applying the immersed 
boundary modification in the lattice Boltzmann method and the non-iterative 
enthalpy approach for the separation of the states, the moving boundary of the 
melting or solidification front is solved without any difficulty. The ice bed and 
the submerged ice cover under dynamic flow conditions is exercised to 
demonstrate the model performance. The model is extremely suitable in the 
formulation in terms of its simple and compact framework extendable to any 
dimensions. 
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1 Introduction 

The ice and water mixture is the one of the common objects in cold regions. Ice acts 
like a solid in water flow and the situation will become even more difficult when 
thermodynamic is involved in the system. This complicated physics of ice and water is 
the motivation of this study.  

The liquid-solid phase changes are often referred as the Stefan problem [1], which 
has complexity having moving boundary showing a liquid-solid interface in time. 
Solving moving body or boundary brings many difficulties for conventional methods 
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[2]. State-of-Art methods for phase change are limited to enclosed region and are based 
on fixed grid-based approach and front tracking approach. However, these approaches 
require to solve additional sets of equation and boundary condition on the moving 
boundary interface [3, 4]. Recently, particle-based method appears to provide solutions 
and visual simulations of phase change in free surface flow and performance of this 
approach will cost in large scale simulations [5]. The phase change of water in free 
surface flow is important physical phenomena in engineering and nature, however, no 
particular computational effort is presented in the literature to the best of authors 
knowledge.  

In this paper, we present a numerical procedure for liquid-solid phase change of 
water by using the Lattice Boltzmann method (LBM) modified by the immersed 
boundary term. The numerical procedure is composed as follows. Two distribution 
functions approach was used to account flow field and temperature field on fixed grids 
in two dimensions. The D2Q9 lattice arrangement was used for both field of distribution 
functions (refer to [6] for details). The enthalpy-based non iterative method was used 
for phase change of fluid counting on the local enthalpy updates [7]. For open channel 
fluid flow, free surface formulation of single-phase LBM is employed [8]. Integration 
of the immersed boundary modification and enthalpy-based non iterative technique in 
the free surface flow is straightforward. 

2 Lattice Boltzmann method for free surface flows with 
phase transitions 

For fluid flow with free surface representation, a discretized Boltzmann equation 
with the Bhatnagar-Gross-Krook collision operator [9] and modification of the 
immersed moving boundary [10] is to be solved by collision and streaming steps as: 

𝑓௜ሺ𝐱 ൅ 𝐜௜∆𝑡, 𝑡 ൅ ∆𝑡ሻ െ 𝑓௜ሺ𝐱, 𝑡ሻ ൌ  െ
∆𝑡ሺ1 െ 𝛽ሻ

𝜏௧௢௧
ቀ𝑓௜ሺ𝐱, 𝑡ሻ െ 𝑓௜

௘௤ሺ𝐱, 𝑡ሻቁ 

൅𝛽𝑓௜
௠ሺ𝐱, 𝑡ሻ ൅ ∆𝑡𝐅௜,                                                          ሺ1ሻ 

where 𝐜௜ is the discrete unit velocity in the 𝑖 direction, 𝜏௧௢௧ is the dimensionless 
relaxation time with respect to the lattice viscosity 𝑣 and is adjusted with the sub-grid 
scale turbulent model and 𝛽 is the parameter given by 

 𝛽൫𝑙௙, 𝜏൯ ൌ
൫1 െ 𝑙௙൯ሺ𝜏 െ 0.5ሻ

𝑙௙ ൅ ሺ𝜏 െ 0.5ሻ
,                                               ሺ2ሻ 

in which 𝑙௙ሺ𝐱, 𝑡ሻ is the liquid fraction value of the cell, which takes a value between 0 
and 1. Liquid fraction values of 0 and 1 represent ice and water, respectively.                    
In Eq. (2), the total relaxation 𝜏௧௢௧ can be used instead of the relaxation time 𝜏. The 
immersed boundary modification can be used for not only dynamic separation of solid 
(ice) and liquid (water) phases, but also for a moving body (moving ice) condition in a 
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fluid flow. Therefore, an additional collision term 𝑓௜
௠ is for cells partially or fully 

covered by a solid, i.e., ice cell, is given as 

𝑓௜
௠ሺ𝐱, 𝑡ሻ ൌ 𝑓ప̅ሺ𝐱, 𝑡ሻ െ 𝑓௜ሺ𝐱, 𝑡ሻ ൅ 𝑓௜

௘௤ሺ𝜌, 𝐮௦ሻ െ 𝑓ప̅
௘௤ሺ𝜌, 𝐮ሻ,                             ሺ3ሻ 

where 𝐮௦ is the velocity of the moving solid [10]. 
The macroscopic variables, namely density ρ and velocity 𝐮, can be computed by 

the orders of the moments of the distribution functions 𝑓௜ as 

 𝜌 ൌ ෍ 𝑓௜

଼

௜ୀ଴

,     𝜌𝐮 ൌ ෍ 𝐜௜𝑓௜

଼

௜ୀ଴

൅
𝐅∆𝑡

2
.                                                ሺ4ሻ 

Free surface of the liquid is tracked by volume fraction values defined by the ratio 
of cell mass to cell density. The cell mass is only evaluated on interface cells by 
distribution functions and is a unit for every liquid cell as water or ice. Solution of free 
surface in LBM is known as a single-phase model, so that no physical variables will be 
defined for empty cell which represents gas state as air. Influence of gas state realized 
by a free surface boundary condition which assumes that the fluid has a much lower 
kinematic viscosity than the gas state and is expressed in terms of the following 
distribution function on a free surface interface node: 

𝑓ప̅
ᇱሺ𝒙, 𝑡 ൅ ∆𝑡ሻ ൌ 𝑓௜

௘௤ሺ𝜌஺, 𝒖ሻ ൅ 𝑓ప̅
௘௤ሺ𝜌஺, 𝒖ሻ െ 𝑓௜ሺ𝒙, 𝑡ሻ,                                ሺ5ሻ 

where 𝜌஺ is the gas density implicitly acting as air pressure onto the free surface.  
   In the modelling of heat transport with phase change, the temperature field is 

considered to be an essential variable and can be calculated by the following thermal 
lattice Boltzmann equation with latent heat of fusion [11]: 

𝑔௜ሺ𝒙 ൅ 𝒄௜∆𝑡, 𝑡 ൅ ∆𝑡ሻ െ 𝑔௜ሺ𝒙, 𝑡ሻ ൌ െ
ቀ𝑔௜ሺ𝒙, 𝑡ሻ െ 𝑔௜

௘௤ሺ𝒙, 𝑡ሻቁ

𝜏௛
 

െ𝑤௜
𝐿௛

𝑐௣
ቀ𝑙௙ሺ𝒙, 𝑡 െ ∆𝑡ሻ െ 𝑙௙ሺ𝒙, 𝑡ሻቁ,                                      ሺ6ሻ 

where 𝑔௜ሺ𝐱, 𝑡ሻ is the distribution function for the temperature field, 𝜏௛ሺൌ 3𝛼 ൅ 1/2 ሻ 
is the dimensionless relaxation time with respect to the thermal diffusivity 𝛼, 𝐿௛ is the 
dimensionless latent heat of fusion, and 𝑐௣ is the specific heat capacity of water or ice. 
The equilibrium distribution function of the temperature field can be given as 

𝑔௜
௘௤ ൌ 𝑤௜𝜃 ൤1 ൅

𝒄௜ ∙ 𝒖
𝑐௦

ଶ ൨   with 𝜃 ൌ ෍ 𝑔௜

଼

௜ୀ଴

,                                         ሺ7ሻ  

and the macroscopic temperature 𝑇 can be converted from dimensionless temperature 
𝜃 as follows: 
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 𝑇 ൌ
𝑇௠௔௫ െ 𝑇௠௘௟௧

𝜃௠௔௫ െ 𝜃௠௘௟௧
ሺ𝜃 െ 𝜃௠௘௟௧ሻ ൅ 𝑇௠௘௟௧ .                                          ሺ8ሻ 

After the dimensionless temperature evolution, the local enthalpy [12], obtained by 
𝐸𝑛 ൌ 𝑐௣𝜃 ൅ 𝑙௙ሺ𝐱, 𝑡 െ ∆𝑡ሻ𝐿௛, can be used to linearly interpolate the liquid fraction, 

𝑙௙ሺ𝒙ሻ ൌ

⎩
⎨

⎧
1    for 𝐸𝑛 ൐ 𝐸𝑛௦ ൅ 𝐿௛ ൌ 𝐸𝑛௟
0   for 𝐸𝑛 ൏ 𝐸𝑛௦ ൌ 𝑐௣𝜃௠௘௟௧  

𝐸𝑛 െ 𝐸𝑛௦

𝐸𝑛௟ െ 𝐸𝑛௦
 for 𝐸𝑛௦ ൑ 𝐸𝑛 ൑ 𝐸𝑛௦ ൅ 𝐿௛

,                              ሺ9ሻ 

and the liquid fraction defines the liquid (water) and solid (ice) phases in the domain. 
The phase, i.e., ice or water, is assigned to F cells because ice, which acts like a solid, 
will become water after melting. Moreover, if ice interacts with the air (G cells), 
boundary cells between the ice and air must be IF cells because IF cells have a certain 
water content. At the interface between ice and water, 𝑙௙ሺ𝒙ሻ takes a value of between 0 
and 1. The interaction between the free surface flow module and the heat transport with 
the phase change module is such that the temperature difference produces a buoyance 
force in the flow field, and the flow field affected by the buoyance force forms a 
convective temperature field in the domain. Although the buoyance force is negligible 
in a turbulent flow, it must be included in the computation. The lattice viscosity is 
related to the lattice thermal diffusivity of a fluid as 𝛼௪௔௧௘௥ ൌ 𝜈/𝑃𝑟, where 𝑃𝑟 is the 
Prandtl number, so that the relation between the computational modules is maintained. 

3 Numerical simulations and discussions 

The thermal free-surface LBM is implemented as computation code and validation 
can be found in [6] and [13]. The validated code was then extended to include a phase 
transition without the latent heat source term and tested on the melting of the ice-slab 
and the melting of the ice cube in an ambient air [14]. With the following numerical 
tests, the application of the proposed model is elaborated. 

3.1 Melting of an ice bed 

In the early stage of model development, ice bed melting by flow over a weir was 
simulated in [6] for ice that was ready to melt, i.e., the ice temperature was set to 0°C, 
and the latent heat was ignored. In the present study, we included a latent heat source 
term in heat transport and extended the temperature range. The initial and boundary 
condition is indicated by the problem geometry, as shown in Fig. 1a. 
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Figure 1. Numerical examples. (a) Ice bed melting; (b) submerged ice cover melting by flow 

over a weir. 

Initially, temperatures of -30°C, 20°C, and 30°C were set for ice, air, and water, 
respectively. The inlet and outlet boundary of the flow field was imposed with a 
velocity boundary condition [15], whereas the wall and the surface of the weir were 
modeled as slip walls. Water at a temperature of 30°C was supplied to the inlet, where 
the thermal boundary was given by the Dirichlet boundary condition [16]. The second-
order extrapolation boundary condition was imposed on the outlet boundary for the heat 
transport module [17]. The other walls and the surface of the weir were assumed to be 
adiabatic. Weir flow by the free surface LBM was carefully investigated and validated 
by [8], and we herein used a weir flow with a Froude number of 𝐹 ൌ  0.13. In order to 
examine grid independence, we considered two grid resolutions, namely, ℎ ൌ  60 and 
ℎ ൌ  80, where h is the grid number used for the weir height, as shown in Fig. 1a. The 
relaxation times for the grid resolutions for the flow field were chosen as 𝜏ఔ= 0.526 and 
0.534, respectively, which is adjusted to 𝜏௧௢௧ by the sub-grid scale model [18]. The 
relaxation times for the heat transfer module was determined by using the thermal 
diffusivity of water, which can be connected to the lattice viscosity by the Prandtl 
number. The ratio of the remaining ice area to the initial ice area was measured and is 
shown with respect to melting time in Fig. 2. 

 
Figure 2. Percentage of remaining ice area for different grid sizes and parameters as 

determined by the numerical simulation. 
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Depending on the parameters, both grid resolution and the selected relaxation times, 
the total times of melting differed by approximately 0.6 min, and in the case of            
ℎ ൌ  60, the ice lasted 3.8 min. Based on these considerations, choosing appropriate 
parameters based on their physical relations is more important than grid resolution. The 
melting rates for these two cases have similar melting rate tendencies, as shown in                 
Fig. 2, but after approximately 3.3 min melting rates are changed due to the low melting 
rate of the ice located directly behind the weir. Between the nappe entrance and the 
weir, where the flow is partially circulated, the convective heat transfer between the 
water and the ice was small due to the low velocity in this region. 

Heat transfer between water and ice can clearly be explained in terms of the Nusselt 
number. The local Nusselt number at a point on the melting front is defined as [19]: 

𝑁𝑢௅ ൌ ฬ
𝜕𝜃
𝜕𝑦

ฬ
௬ୀinterface

,                                              ሺ10ሻ 

and the average Nusselt number along the ice-water interface was calculated as 

𝑁𝑢௔௩ ൌ
1
𝐻

෍ 𝑁𝑢௅

௞ୀு

௞ୀଵ

𝑀,                                             ሺ11ሻ 

where 𝐻 is the grid number for the length of the ice, and 𝑀 is the grid number for the 
depth of the water above the ice. The local Nusselt number and ice depth are plotted 
with respect to the elapsed time in Fig. 3. 

 
Figure 3. Time series of ice depth and local Nusselt number measurement. 

The local Nusselt number at 0.7 m fluctuates with a higher frequency and amplitude 
than that at 1.0 m, and the tendency in both cases is to increase with time until 
decreasing suddenly at the location at which the ice depth decreases. Generally, this 
tendency is due to the fact that heat increases in ice and water near the interface, and 
the sudden drop is due to the disappearance of the ice. As the frequency increases, ice 
at approximately 0.7 m from the origin quickly melted because the convective heat 
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transport at this position is high. The heat transfer coefficient expressed in terms of 
𝑁𝑢௔௩ in Fig. 4 was approximately ℎ௖ ൌ  𝑁𝑢௔௩𝑘ோ

௜௖௘/𝐿௠  ൎ  1,090.8 WK-1m-2, where 𝐿௠ 
is the characteristic depth of water on the ice. The temperature field and ice/water phase 
with a free surface at three different times are plotted in Fig. 5, where the interaction of 
the flow structure and the thermal behavior of phases are shown clearly.  

 
Figure 4. Local and average Nusselt numbers during interface between ice and water. 

Figure 5. Temperature and vector fields at three different times obtained through simulation of 
ice bed melting. 
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3.2 Melting of a submerged ice cover 

A submerged ice cover melting simulation was conducted in order to determine the 
applicability of the numerical model to real field problems, in which ice in a river or a 
reservoir is mixed with free surface flows. In this case, the fixed position of the ice will 
help in the visualization of the freezing and melting of water. Therefore, the ice does 
not break up and move freely. The motion of ice in the model was studied, where we 
analyzed floating ice on the water surface [20] in short time. 

As shown in Fig. 1b, the condition and geometry of the submerged ice cover are 
such that heat is absorbed by the bottom of the ice and the water is expected to freeze 
downward due to water being trapped under the ice cover, where natural convection 
flow may dominate. Excluding the outlet velocity condition, all of the parameters and 
given conditions were the same as in the ice bed melting simulation. 

 
Figure 6. Percentage of remaining ice area for different grid sizes and parameters as 

determined though numerical simulation. 

Fig.6 shows the melting rate of ice for the two simulation cases, ℎ ൌ  60 and 80, 
and a discrepancy between the time courses appears at around 1.0 min in the simulation. 
However, a comparison between those two cases of the general melting shape of ice 
cover revealed no significant differences. The differences of the curves show that the 
finer grid might provide more detailed dynamics of ice cover melting and freezing in 
shape. Fig.7 shows the general melting process of the ice cover in the simulation. The 
ice cover absorbs heat from water flowing over it, and the cooled water flows out of the 
outlet boundary. At the same time, beneath the ice cover, heat can only be transported 
by conduction, as shown in Fig. 7a, until a natural convection flow forms in the water 
region beneath the ice cover, because the water in this region is trapped by the 
circulating water flow near the outlet boundary, as shown in Fig. 7d. The circulation 
flow near the outlet boundary transports heat and momentum into the closed region 
beneath the ice cover. Another circulation flow was observed where the water flows 
over the weir. This circulation convects heat to the ice behind the weir. As water flows 
over the ice cover, melting occurs and the ice is gradually eroded by the overtopping 
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flow (Fig. 7b). The melting rate of the upper surface of the ice cover was higher than 
in other parts of the melting ice. This situation continues until a natural convection flow 
forms in the water region beneath the ice cover. As expected, freezing occurred on the 
bottom surface of the ice cover due to convection. However, an opening eventually 
formed near the back face of the weir through which water could flow into the region 
of water trapped by the circulation flow, as shown in Fig. 7e. The flow then surrounds 
the ice cover and melts the ice from all sides. The outlet circulation flow was an active 
heat transporter and melted and sharpened the tail of the ice cover, as shown in Figs. 7a 
and 7e. 

 
Figure 7. Temporal change of temperature and flow vector field distributions at three different 

times obtained through simulation of ice cover melting. 

Due to erosion, the ice cover was split into two pieces by the overtopping flow after 
approximately 1.6 min, which is indicated by the recurve shape of the lines in Fig. 6. 
The piece near the outlet boundary quickly melted because it was surrounded by an 
active flow field. The small piece of ice remaining can be seen in Fig. 7f, and its effect 
on the temperature field can be seen in Fig. 7c. The piece of ice near the weir eventually 
extended downward to the bottom boundary, as shown in Fig. 7f. Fig.8 shows the 
temperature and velocity profiles at 0.7 m and 1.0 m at various times. Fig.8 shows that 
the velocity and temperature profiles have the same tendency due to the massive 
amounts of heat transport by convection in turbulent flow. The vertical temperature 
gradient can be high where the flow velocity is high, as indicated near the upper surface 
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of the ice cover in Figs. 8a and 8b. Unrealistic velocity and temperature decreases in 
the middle of the profiles appear at 1.0 m in Fig. 8c because of the piece of ice remaining 
in the flow, which cannot move with the water flow. As such, this piece of ice 
influenced the velocity field as an obstacle, resulting in a cooler temperature 
distribution.  

 
Figure 8. Vertical profiles of temporal velocity and temperature at three different times: (a) t = 

0.67 min, (b) t = 1.35 min, and (c) t = 2.03 min. 
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4 Conclusion 

We have tested our numerical procedure on the ice bed and submerged cover melting 
in open channel flow. Validation of numerical procedure on liquid-solid phase changes 
in closed region can be found in our previous publications. The numerical procedure 
does not require any additional equation or condition to treat moving boundary of 
melting or solidification fronts. Exploiting the liquid fraction value is useful for multi-
physics simulation involving solid and liquid motion in the system. In that concept, we 
have adopted the immersed boundary modification for the LBM to separate liquid and 
solid states in assistance of liquid fraction values. The immersed boundary modification 
provides stable dynamic interactions between liquid and solid states. The performance 
of the numerical model on the two example tests was promising. Nevertheless, the 
accuracy of the numerical procedure needs to be validated against experimental study 
in the open channel flow with ice. In future studies, ice motion and ice-ice interaction 
need to be considered in order to study ice jam or ice water mixture in the river. The 
large simulation involving the large time and space scale can be solved in parallel 
computational architectures, in which current model is perfectly suitable. 
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