
www.cajms.mn          111Vol.2• No.2• November 2016

Understanding the Thymic Microenvironment: the 
Cellular and Molecular Basis of T Cell Development
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Objectives: The thymus is a primary lymphoid organ that provides specialized microenvironment 

for T cell development.  A variety of thymic stromal cells form the thymic tissue architecture 

and critically regulate the development and repertoire selection of T cells.   Methods: We 

reviewed historical and recent studies on thymic stromal cells, especially focusing on the well-

characterized functions of thymic epithelial cells (TECs) and the significance of as yet less 

characterized non-TEC thymic stromal cells and hematopoietic antigen-presenting cells in the 

regulation of T cell development.  Results: Cortical TECs (cTECs) induce positive selection of 

diverse and functional T cells, while medullary TECs (mTECs) establish T cell tolerance via the 

negative selection of auto-reactive T cells and their conversion into regulatory T cells.  These 

modes of T cell tolerance induction are also mediated by hematopoietic antigen-presenting cells 

such as dendritic cells and thymic B cells.  Thymic mesenchymal cells, a prominent component of 

non-TEC thymic stromal cells, support the development and maintenance of TECs and thereby 

T cell production.  Conclusion: Understanding the cellular and molecular basis for thymic 

stromal subsets will provide invaluable information toward in vivo reconstitution of the thymic 

microenvironment for future therapeutic applications.
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Introduction

T lymphocytes (T cells) are central players in the adaptive immune 

system.  Specific recognition of peptide antigens displayed with 

major histocompatibility complex (MHC) proteins by diverse T 

cell antigen receptors (TCRs) and the coreceptor CD4 or CD8 play 

a major role in immune responses against foreign antigens in 

humans and mice.  The specificity of antigen recognition by TCR 

is stringently maintained so that T cells are reactive to foreign 

antigens but tolerant to self-antigens [1, 2].  The development of 

T cells and the formation of their TCR repertoire occur primarily 

in the thymus [3].  This article reviews the cellular and molecular 

mechanisms by which these processes are carried out.  

The thymus is an organ exquisitely specialized for supporting 

T cell development.  The thymic microenvironment is composed 

of a variety of stromal cells, including thymic epithelial cells 
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(TECs), endothelial cells and fibroblasts [4].  These thymic stromal 

cells form a three-dimensional meshwork architecture that hosts 

hematopoietic stem cell-derived immature T cells (thymocytes) 

and critically supports their development.  Certain hematopoietic 

antigen-presenting cells, such as dendritic cells (DCs) and thymic 

B cells, also participate in controlling the formation of T cell 

repertoire.  The thymus is subdivided into two discrete regions, 

the cortex and medulla.  The cortex is the outer region of the 

thymus, where a stromal meshwork houses densely packed, 

immature thymocytes, while the medulla is the inner region, 

packed with enriched stromal cells and less densely localized 

mature thymocytes.  The most characteristic stromal components 

that distinguish the cortex and medulla are two different TEC 

subsets: cortical TECs (cTECs) and medullary TECs (mTECs).  

The cortical stromal architecture is mainly composed of cTECs, 

whereas the medullary microenvironment is heterogeneous, 

being composed of mTECs, mesenchymal fibroblastic reticular 

cells (FRCs), DCs and B cells.  The thymus also contains blood 

vessels that are composed of endothelial cells and mesenchymal 

cells and are enriched in the cortico-medullary junction [5-7].  

These thymic stromal cells provide multiple signals to guide the 

differentiation, migration, proliferation, survival and death of 

developing thymocytes, thus playing essential roles in supporting 

the adaptive immune system [8, 9].

This article provides an overview of the stepwise process 

of T cell development in the thymus, then reviews our current 

understanding of the development and function of thymic 

stromal cells, particularly focusing on the two well-characterized 

thymic stromal cell subsets, cTECs and mTECs.  In addition, 

recent advances on less well characterized thymic stromal cells 

and hematopoietic antigen presenting cells, such as DCs and B 

cells, are also discussed.

1. T cell development in the thymus
The most immature thymocytes, which are called early T cell 

progenitors (ETPs), are derived from hematopoietic stem cells 

in the fetal liver or adult bone marrow [10].  These ETPs belong 

to CD4/CD8 double negative (DN) thymocytes and undergo 

developmental programs that go through DN1 (CD44+CD25-), 

DN2 (CD44+CD25+), DN3 (CD44-CD25+) and DN4 (CD44-

CD25-) stages.  During the DN2 and DN3 stages, TCRβ-VDJ 

rearrangement occurs.  Successful rearrangement of the TCR 
β-chain leads to further differentiation into the DN4 stage.  

This process, called ‘β selection’, ensures commitment to the T 

cell lineage.  DN4 thymocytes proliferate and express CD4 and 

CD8 co-receptors, giving rise to CD4/CD8 double positive (DP) 

thymocytes.  These differentiation processes are associated with a 

relocation of thymocytes: in the adult thymus, ETPs first enter the 

thymus via vessels at the cortico-medullary junction, developing 

DN2 and DN3 thymocytes migrate across the cortex toward the 

subcapsular region, and the generation of DP thymocytes occurs 

in the outer cortex. 

In the cortex, DP thymocytes undergo TCRα-VJ 

rearrangement, as a result expressing the abTCR on the cell 

surface.  DP thymocytes move randomly in the cortex, probably 

seeking pMHC ligands for their newly generated TCR in the 

cortical microenvironment.  Interaction of the abTCR with 

peptide-MHC (pMHC) complexes presented in the cortical 

microenvironment leads to the decision of the fate of DP 

thymocytes.  DP thymocytes that receive a low avidity TCR 

interaction with self pMHC survive and differentiate into mature 

thymocytes.  Cells expressing MHC class II-reactive TCR are fated 

to the CD4 single positive (SP) lineage, while those with MHC 

class I-reactive TCR are fated to the CD8SP lineage, the process 

referred to as “positive selection”.  In contrast, DP thymocytes 

expressing TCR strongly reactive to self pMHC (self-reactive cells) 

die by apoptosis, a process referred to as “negative selection”.  

DP thymocytes that fail to express pMHC-reactive TCR are also 

destined to die, a process referred to “null-selection” or “death-

by-neglect”.  Positively selected CD4SP or CD8SP thymocytes 

relocate to the medulla by chemotactic migration.  In the 

medulla, mTECs express a variety of peripheral tissue-restricted 

antigens (TRAs), at least partly by virtue of autoimmune regulator 

(Aire), a nuclear factor expressed in mTECs.  TRAs are presented 

autonomously by mTECs or cross-presented by DCs, such that SP 

thymocytes reactive to TRAs are deleted by negative selection 

or induced to differentiate into Foxp3-expressing regulatory T 

(Tregs) cells.  Consequently, mature SP thymocytes that have 

completed the cortical and medullary selection processes, which 

thereby express diverse yet self-tolerant TCRs, are released into 

the circulation as naïve T cells.

In addition to classical T cell development, the thymus also 

supports the development of unconventional (non-classical) T 

cells, such as gdT cells, invariant natural killer T (iNKT) cells, and 

natural T helper 17 (nTh17) cells.  gdT cells belong to a distinct T 

cell lineage that expresses TCRγ and TCRδ chains and recognizes 
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native non-peptide and peptide antigens, such as stress-induced 

proteins.  abT and gdT cell development diverges at the DN2 

and DN3 stages.  iNKT cells represent an unconventional abT 

cell subset expressing invariant Va14-Ja18 TCR that recognizes 

glycolipid antigens presented by MHC-like CD1d molecules, 

playing a role in the regulation of the innate and adaptive 

immune responses [11].  These iNKT cells are positively selected 

by CD1d/glycolipid complexes expressed on the surface of DP 

thymocytes [12].  nTh17 cells comprise an unconventional CD4+ 

abT cell subset that potentially contributes to both protective 

and pathological inflammatory responses.  The development of 

nTh17 cells requires the expression of MHC class II and self-

antigens in mTECs and the cytokines IL-6 and transforming 

growth factor (TGF) β [13-15].

2. cTEC development
cTECs are the predominant cells that form the stromal 

architecture in the thymic cortex.  Marker proteins that identify 

cTECs in the adult thymus include cell-surface proteins such 

as CDR1, CD205 and CD249 (Ly51), as well as intracellular 

proteins such as keratin-8, keratin 18 and β5t.  Both cTECs and 

mTECs are derived from common endodermal progenitor cells 

that reside in the third pharyngeal pouch [16-18].  The common 

TEC progenitors progress to the transitional progenitor stage, a 

process dependent on the transcription factor FOXN1 [19, 20].  

Such transitional TEC progenitors express cTEC-associated genes, 

such as CD205, β5t, CCRL1, and IL-7, and give rise to both cTECs 

and mTECs [20-22].  The generation of mature, functional cTECs 

from transitional TEC progenitors requires signals delivered by 

developing DN thymocytes, most likely through intercellular 

signals that have yet to be identified [19, 23].

2.1 cTECs support the thymic architecture and early T 
cell development
 Mutant mice lacking normal cTEC development, either 

intrinsically or inducibly, exhibit disorganized cortical 

architecture and a massive loss of thymic cellularity, indicating 

that cTECs are required for the formation and maintenance of 

the thymic architecture and for optimizing T cell development 

[24-28].  cTECs provide a variety of the molecules required 

for the survival, proliferation, differentiation and migration of 

immature thymocytes.  Dll4, a Notch ligand expressed by cTECs, 

is both necessary and sufficient for T-lineage determination 

of early lymphoid progenitors in the thymus [29-31].  IL-7 is 

also predominantly produced by cTECs [32] and promotes the 

survival, proliferation, and differentiation of thymocytes [33-

35].  Outward migration of DN thymocytes from the cortico-

medullary junction to the subcapsular region is mediated by 

the chemokines Ccl25 and Cxcl12, which are produced by 

cTECs, and their respective receptors CCR9 and CXCR4, which 

are expressed in DN thymocytes [36-39].  CCRL1 is highly 

expressed in cTECs and is an atypical non-signaling chemokine 

receptor that binds CCL25, as well as CCL19 and CCL21 [27].  

It promotes the outward migration of DN thymocytes via 

still-unknown mechanisms [40, 41].  Vascular-cell adhesion 

molecule-1 (VCAM-1) is expressed by cTECs and its receptor 

integrins α4b1 and α4β7 are expressed by DN thymocytes.  

They are also important for intimate stromal interactions and 

the outward migration of DN thymocytes [42].  DN thymocytes 

turn back inward and differentiate into DP thymocytes in the 

subcapsular region.

2.2 cTECs control positive selection 
The most widely recognized function of cTECs is the induction 

of T cell positive selection.  The thymus from cTEC-deficient mice 

exhibits impaired positive selection and an altered TCR repertoire 

[28].  As described above, a low affinity TCR engagement by 

pMHC complexes induces positive selection of functional T cells, 

whereas a high affinity TCR-pMHC interaction leads to negative 

selection of self-reactive (potentially harmful) T cells.  Recent 

studies support the idea that cTECs have unique proteolytic and 

antigen processing capabilities for producing the MHC-bound 

peptides that are required for positive selection.  

For the MHC class I system, cTECs are equipped with a 

unique type of proteasome.  Proteasomes are huge protease 

complexes that are responsible for producing MHC class I-bound 

peptides as well as handling the turnover of intracellular proteins 

[43].  Peptides with C-terminal hydrophobic anchor residues are 

produced by the chymotrypsin-like activity of the proteasomes, 

an effect which is mediated by β5 catalytic subunits.  Unlike most 

somatic cells that express ‘standard proteasomes’ possessing 

the standard β5 subunit, or immune cells and interferon 

(IFN) γ-stimulated cells that express β5i subunit-containing 

‘immunoproteasomes’ [44, 45], cTECs express a specialized 

type of proteasome, called a ‘thymoproteasome’, that contains 

the β5t subunit [46, 47].  β5t is exclusively expressed by cTECs 
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throughout the lifespan of mice [48], thus constituting a specific 

marker of cTECs.  In mice deficient for β5t, cTECs express β5- 

and β5i-containing proteasomes and display a spectrum of 

MHC class I-bound peptides that are different from those in 
β5t-sufficient cTECs [49, 50].  In these mice, positive selection 

of MHC class I-restricted thymocytes is substantially reduced, 

leading to a marked reduction (only 20% of the wild-type) and 

altered repertoire of CD8 T cells, indicating that an optimal 

positive selection of CD8 T cells requires the β5t-dependent 

peptide repertoire in cTECs.  The β5t-dependent peptides also 

determine the antigen responsiveness of positively selected CD8 

T cells [51]. A recent study identified unique cleavage motifs in 

β5t-dependent MHC class I-bound peptides that confer a low 

affinity TCR interaction and have the capacity to induce positive 

selection [52].  This uniqueness of the peptide motifs might be 

attributed to the peptide cleavage preference difference that 

exists between β5t and the other subunits, β5 and β5i [46, 

52].  Collectively, these various characteristics show that cTECs 

regulate positive selection of CD8 T cells by producing a unique 

set of MHC class I-bound peptides with a low affinity for the 

TCR.

Furthermore, in the case of the MHC class II system, cTECs 

have unique protein degradation and antigen processing 

mechanisms for inducing the positive selection of CD4 T cells.  

Lysosomal proteases, such as cathepsin L and thymus-specific 

serine protease (TSSP), are highly expressed in mature cTECs.  

Mice deficient in cathepsin L exhibit a reduced positive selection 

of polyclonal CD4 T cells [53, 54].  TSSP-deficient mice exhibit 

a defective positive selection of CD4 T cells having certain TCR 

specificities [55-57].  It was also shown that cTECs exhibit high 

levels of constitutive autophagy [58], an auto-degradation 

process that facilitates the loading of endogenous peptides 

onto MHC class II.  Mice with defective autophagy induction, 

specifically in TECs, display altered repertoire selection in certain 

CD4 T cells.  The nature of the MHC class II-bound, positive 

selection-inducing peptides produced by cTECs remains to be 

elucidated. 

The thymic cortex is also the site at which thymocytes 

reactive to self-antigens are deleted by negative selection.  It 

is estimated that nearly six times as many thymocytes undergo 

negative selection compared with positive selection and 75% of 

this negative selection occurs in the cortex [59], most frequently 

the inner cortical region [60].  However, negative selection, in 

any experimental model yet tested, was observed to be normal 

in β5t-deficient mice [49], TSSP-deficient mice [55] and cTEC-

deficient mice [28], indicating that cTEC-specific peptides are not 

required for cortical negative selection. Rather, it is the cortex-

resident DCs that appear to be responsible for the negative 

selection that occurs in the cortex [60].

2.3 cTECs form ‘thymic nurse cells’
Another noteworthy feature of cTECs is the unusually intimate 

interactions they have with developing thymocytes.  A study 

published in 1980 demonstrated unique multicellular complexes 

comprised of huge epithelial cells that engulf many living thymic 

lymphocytes within their intracellular vesicles, a discovery made 

in cell suspensions prepared by enzymatically dissociating 

thymus tissues [61].  This multicellular complex (or the epithelial 

cell that forms this complex) was called ‘thymic nurse cell 

(TNC)’.  This study, as well as many later studies (reviewed in 

[62]), hypothesized that TNCs provide microenvironment for 

positive and negative selection, although the precise cell lineage 

and function of the TNC-forming thymic epithelium remained 

elusive at that time.  A recent report found that a majority of 

cTECs, but not mTECs, tightly interact with thymocytes and that 

approximately 10% of the cTECs in the adult mouse thymus 

form thymocyte-wrapping complexes that are identical to the 

previously described TNCs [63].  TNC formation is less detected 

in the case of strong positive selection, but is readily detectable 

in the null-selection case.  TNC-enveloped lymphocytes are 

enriched in long-lived, unselected DP thymocytes undergoing 

secondary TCRα-VJ rearrangement.  Thus, TNCs are formed 

upon persistent cTEC-DP thymocyte interaction and facilitate 

secondary TCRα rearrangement.  Given that the efficiency of 

secondary TCRα rearrangement is controlled by DP thymocyte 

survival [64], the microenvironment within intra-TNC vesicles 

may ensure the survival of enclosed DP thymocytes.  Secondary 

TCRα rearrangement is required for increasing the opportunity 

for positive selection, thereby maximizing developmental 

efficiency of functional T cells, including allo-reactive T cells [65].  

The mechanisms by which unselected thymocytes are enclosed 

into and positively selected thymocytes are released from the 

TNC complexes, and by which the intra-TNC microenvironment 

promotes survival and/or continued TCR rearrangement in DP 

thymocytes, remain to be determined.
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3. mTEC development 
mTECs are distinguished by the expression of cell-surface proteins 

such as claudin-3, claudin-4 and CD80, as well as intracellular 

proteins such as keratin-5, keratin-14 and Aire.  The fucose-

binding lectin Ulex europaeus agglutinin 1 (UEA1) is also a widely 

used marker of mTECs.  As described above, mTECs emerge from 

TEC progenitors that express cTEC-associated genes.  Immature 

mTECs expressing low levels of MHC class II and CD80 (mTEClo) 

differentiate into MHC class IIhi CD80hi mature mTECs (mTEChi) 

expressing Aire [66, 67, 68].  In the adult thymus, mTEClo is 

a heterogeneous cell population that includes both developing 

immature mTECs and developed mature mTECs at the ‘post-

Aire’ stage [69, 70].  The ‘post-Aire’ mTEClo cells constitute a 

distinct mTEC subpopulation expressing chemokines such as 

CCL21 [71]. These cells further undergo terminal differentiation 

that is characterized by the expression of involucrin and the 

stratified squamous epithelia that resemble Hassall’s corpuscles 

observed in the human thymus [72, 73].  

3.1 Developing T cells promote mTEC development and 
thymic medulla formation
The formation of the thymic medulla is defective in mice deficient 

for early T cell development [74].  In particular, mice deficient 

for positive selection show a marked reduction of the thymic 

medullary regions and mTEC cellularity, without any effect on 

the thymus size or cortical architecture [75-78], indicating that 

the positively selected SP thymocytes induce the development of 

mTECs, which, in turn, provide the microenvironment required 

for the selection and maturation of SP thymocytes.  

The mechanism of thymocyte-dependent mTEC development 

can be accounted for the ligand-receptor interactions that 

activate the transcription factor nuclear factor-κB (NF-κB) in 

mTECs.  Mice deficient in NF-κB signaling molecules such as 

TNF receptor-associated factor 6 (TRAF6) [79], NF-κB-inducing 

kinase (NIK) [80] or IκB-kinase α (IKK α) [81], or the NF-κB 

subunits, Bcl-3 [82], NF-κB2 (p52) [83, 84] or RelB [85, 86], 

exhibit defective Aire+ mTECs, mTEC development and thymic 

medulla formation.  These NF-κB pathways for thymic medulla 

formation are activated by the TNFR superfamily receptors 

RANK, CD40 and LTbR that are expressed in mTECs, and their 

TNF superfamily ligands, RANKL, CD40L and lymphotoxins (LTs), 

respectively, that are expressed by lymphoid cells, mostly SP 

thymocytes [87-89].

RANKL, a major mediator of mTEC development, is 

produced by lymphoid tissue inducer (LTi) cells and gdT cells 

in the embryonic thymus and SP thymocytes and iNKT cells in 

the postnatal thymus [88-92].  CD40L and LTs are expressed 

predominantly by SP thymocytes [87-90].  These TNFSF ligands 

have cooperative as well as distinct, non-redundant functions 

in mTEC development.  During embryogenesis, RANKL and LTs 

trigger the differentiation of Aire+ mTECs from Aire- progenitors 

[93], while in the adult thymus RANKL and CD40L promote the 

proliferation of Aire+ mTECs [89, 94].  LTs also regulate the 

development of a distinct subset of mTECs expressing CCL21 

[71, 95, 96] and the terminal differentiation of mTECs [73].  

RANKL signaling in mTECs up-regulates the transcription 

factor Spi-B, which in turn induces the expression of some 

TRAs, co-stimulatory molecules and osteoprotegerin (OPG) [97].  

OPG is an inhibitory decoy receptor for RANKL and represses 

RANKL-mediated mTEC development and expansion [89, 97, 

98], implying a fine-tuning mechanism of mTEC development 

and function.

3.2 mTECs express TRAs and establish T cell tolerance
In the medulla, a diverse array of TRAs, the expression and 

function of which are primarily restricted to peripheral tissues, 

are transcribed in mTECs (reviewed in [9]).  SP thymocytes 

reactive to these TRAs are deleted from the conventional T cell 

pool through deletion by negative selection or differentiation 

into Foxp3+ Tregs.  As shown by many studies, T cells that are 

produced in mice lacking normal mTEC development cause 

autoimmune disorders, indicating that mTECs are essential for 

establishing central tolerance [69, 79-88, 94].  TRA expression 

displays a mosaic pattern, as each TRA protein is expressed in 

only 1-3% of mTECs so that the number and epitope density of 

TRAs can be optimized for presentation to SP thymocytes [9], 

likely through epigenetic mechanisms in which a single mTEC 

coexpress a set of TRA genes which are clustered in chromosomes 

and colocalized to nuclear subdomains [99]. 

A substantial fraction of TRAs is controlled by Aire [100], a 

nuclear protein predominantly expressed in mTECs.  Aire-driven 

TRA expression is crucial for the negative selection of TRA-

reactive SP thymocytes [101-103] and generation of Foxp3+ 

Tregs [104-106] in the medulla.  Complete deficiency of Aire 

gene results in autoimmune polyendocrinopathy syndrome 

type 1 (APS1) or autoimmune polyendocrinopathy-candidiasis-
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ectodermal dystrophy (APECED) in humans [107, 108], and 

similar organ-specific autoimmune disorders in mice [100, 109, 

110], indicating that Aire is essential for the establishment of 

self-tolerance.  Recently, it has been demonstrated that mutations 

in the AIRE gene, including mutations with partial or dominant 

effects, are more frequently found than previously appreciated 

and may cause a variety of autoimmune manifestations in 

human populations [111].  The expression of Aire in mTECs 

is controlled by a cis-regulatory element that contains NF-kB-

binding sites upstream of the Aire coding sequence [112, 113].  

Aire expression is also related to sex, as males exhibit higher 

Aire expression in mTECs compared with females in humans 

and mice, and because androgen and estrogen exert promoting 

or inhibitory effects, respectively, on Aire expression in cultured 

mTECs [114, 115].  Such sex hormone regulation of Aire 

expression may contribute to the higher female susceptibility to 

autoimmune diseases that is widely reported.

The function of Aire in mTECs remains to be determined 

and in fact is controversial.  A series of studies showed that 

Aire directly promotes the transcription of target TRA genes via 

transcriptional elongation and pre-mRNA processing (reviewed 

in [116]), while others have shown that Aire controls the 

differentiation program of mTECs that includes TRA expression.  

The latter model is supported by the evidence that Aire-deficient 

mice exhibit abnormal thymic medulla formation and mTEC 

development [68, 70, 72, 117-119].  They also display defective 

T cell tolerance against Aire-independent TRAs [103, 110], and 

Aire-driven genes include non-TRA proteins, such as cytokines, 

chemokines, MHC class II peptide-loading factors and proteases 

[103, 120-123].  Furthermore, it has been reported that more 

than half of the total TRAs are expressed by mTECs in an Aire-

independent manner [100, 123-125].

A recent report identified the transcription factor Fezf2 

as a regulator of TRA expression in mTECs [126].  Fezf2 is 

predominantly expressed by mTECs in the thymus and controls 

the expression of a substantial number of TRA genes, mostly 

Aire-independent ones, via direct binding to the promoters 

of target TRA genes.  Mice deficient for Fezf2 in TECs exhibit 

autoimmune disorders in multiple peripheral organs, and the 

spectrum of autoimmunity in Fezf2-deficient mice is different 

from that in Aire-deficient mice.  These data indicate that Fezf2 

and Aire play non-redundant and mutually complementary roles 

in regulating TRA expression so as to ensure T cell tolerance.  

Fezf2-deficient mice exhibit a disorganized thymic medulla 

and reduced mTEC numbers, demonstrating the role of Fezf2 

in regulating mTEC development.  It is still unknown whether 

and how genetic variants or mutations of Fezf2 are associated 

with human autoimmune diseases, although Fezf2 is required for 

the development of neurons [127] and its mutations have been 

associated with autism [128, 129].  

3.3 mTECs regulate Treg development
The process by which tolerance is induced by mTECs also involves 

the development of Foxp3+ Treg cells, which are essential for 

protection from autoimmunity [130].  In mice deficient in mTEC 

development or mTEC expression of MHC class II, the thymic 

development of Foxp3+ Treg cells is impaired [79, 80, 82, 

131].  Studies using neo-self antigen transgenic mice showed 

the generation of Foxp3+ Treg cells specific for the self-antigen 

expressed by Aire+ mTECs [104, 132].  Recently accumulating 

data have provided a link between mTEC TRA expression and 

the development of TRA-specific Tregs.  Foxp3+ Treg cells 

reactive to endogenous self antigens are generated in an Aire-

dependent manner [105].  T cells infiltrating self-tissues in Aire-

deficient mice expressed TCRs that were preferentially expressed 

by Foxp3+ Treg cells in Aire-sufficient mice, suggesting that Aire 

directs self-reactive T cells into the Treg lineage [133].  The number 

of Foxp3+ Treg cells was shown to be significantly reduced in 

Fezf2-deficient mice, suggesting that Fezf2-dependent TRAs also 

contribute to Treg cell development [126]. 

Terminally differentiated mTECs form unique swirled 

epithelial structures, called ‘Hassall’s corpuscles’, which may 

provide a microenvironment for the generation of Treg cells.  

Hassall’s corpuscles produce thymic stromal lymphopoietin 

(TSLP), which activates thymic DCs in order to promote the 

differentiation of CD4SP thymocytes into Foxp3+ Tregs [134].    

mTECs may also provide intrathymic niches for Tregs.  The 

number of thymic Foxp3+ Tregs is likely controlled by the mTEC 

cellularity and size of the medulla, as the thymus from OPG-

deficient mice contains an increased number of Foxp3+ Tregs 

[97].  The increased Foxp3+ Tregs in the OPG-deficient thymus 

include a substantial number of recirculating Tregs that re-enter 

the thymus from the periphery [135].

3.4 mTECs regulate thymocyte migration
DP thymocytes that receive positive selection signals differentiate 
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into CD4SP or CD8SP thymocytes and express the chemokine 

receptor CCR7 on the cell surface [136].  The CCR7 ligand 

chemokines CCL19 and CCL21 are produced by mTECs [136] 

and medullary fibroblasts [137], and attract CCR7-expressing 

SP thymocytes from the cortex to the medulla [136, 138, 139].  

During residence in the medulla, SP thymocytes are exposed to 

antigens presented by mTECs and DCs.  CCR7-mediated medulla 

migration is required to ensure negative selection of self-reactive 

SP thymocytes [95,  140].  Indeed, mice deficient in CCR7 or 

CCR7 ligand chemokines exhibit organ-specific autoimmunity 

[139, 141, 142].  mTECs produce another chemokine, Xcl1, 

which mediates medullary accumulation of thymus-resident DCs 

that contribute to Treg development [122].  

SP thymocytes that have completed developmental programs 

and repertoire selection are exported from the thymus into the 

circulation.  This export is controlled by chemotactic signaling via 

sphingosine-1 phosphate (S1P) and its receptor S1P1.  Mature 

SP thymocytes express a high level of S1P1 and then migrate 

toward a gradient of S1P [139, 143, 144] that is provided by 

neural crest-derived perivascular cells (pericytes) in the cortico-

medullary junctions [145] and circulating blood [146].  

4. Thymic DCs
The negative selection of self-reactive SP thymocytes and 

generation of Foxp3+ Treg cells in the thymus require not only 

mTECs, but also thymic DCs.  Thymic DCs are derived from 

hematopoietic precursor cells and predominantly localized in the 

medulla, with a small fraction sparsely localized in the cortex. 

Through direct presentation of endogenously expressed antigens 

and indirect ‘cross-presentation’ of antigens expressed by other 

cells, thymic DCs contribute to the induction of T cell tolerance 

against self-antigens, including Mtv-encoded superantigens, 

blood-borne antigens, and TRAs expressed by mTECs [147-151].

One report estimated that a substantial portion 

(approximately half) of Aire-dependent negative selection and 

Treg development is mediated by the cross-presentation of TRAs 

by thymic DCs [152].  This cooperation between mTECs and 

DCs might be mediated by unidirectional, intercellular transfer 

of mTEC-derived proteins to DCs [153].  These interactions 

among mTECs, DCs and CD4SP thymocytes require medullary 

accumulation of thymic DCs for optimal Treg cell induction which 

depends on the chemokine Xcl1 [122] as well as CCR7-mediated 

medulla migration of CD4SP thymocytes [154].  

5. Thymic B cells
Recent studies have highlighted thymic B cells and their impact 

on T cell selection.  It has been reported that the thymus in both 

humans and mice [155, 156] contains a small population of B 

cells (0.2-0.5% of the thymic cellularity) predominantly in the 

medulla [157].  Thymic B cells are derived from both intrathymic 

B lymphopoiesis [157, 158] and the immigration of peripheral 

B cells [159, 160], and phenotypically are classified as the B2-

type ‘mainstream’ B cells.  MHC class II and the co-stimulatory 

molecules CD80 and CD86 are highly expressed in thymic B 

cells [159, 160, 161], suggesting that these cells are capable of 

antigen presentation to developing SP thymocytes.  Surprisingly, 

unlike peripheral B cells, thymic B cells express the Aire protein 

and a set of Aire-dependent TRAs, albeit at a low level [160].  As 

in the case of the development of Aire+ mTECs, CD80+Aire+ 

thymic B cells are differentiated from CD80-Aire- B cells, and 

this process requires CD40L-CD40 signaling mediated by cell-

cell interaction with self-reactive CD4SP thymocytes.  Thymic B 

cells can induce negative selection of CD4SP thymocytes reactive 

to cognate antigens under a variety of experimental conditions 

[159, 160, 162].  It is also suggested that thymic B cells 

contribute to the generation of thymic Tregs [163, 164].  Thus, 

thymic B cells might play a role in establishing central tolerance, 

such that CD4 helper T cells are made tolerant to B cell antigens 

presented in secondary or tertiary lymphoid tissues.

6. Thymic fibroblasts
In addition to TECs, neural crest-derived mesenchymal cells are 

a prominent component of non-hematopoietic stromal cells 

in the thymus.  During thymic organogenesis, mesenchymal 

cells contribute to the development of the thymic rudiment 

[165, 166] and TEC proliferation [167], and enter the thymic 

rudiment to form the blood vessel architecture [168, 169].  In 

the adult thymus, mesenchymal cells are predominantly localized 

to the capsule and medulla.  Medullary mesenchymal cells, 

characterized by specific markers such as ER-TR7, MTS15 and 

platelet-derived growth factor receptor (PDGFR) [137, 170], 

form a conduit-like structure that resembles the FRC network 

in secondary and tertiary lymphoid organs, so these cells are 

known as thymic FRCs [154].  Thymic FRCs highly express LTbR, 

IL-7, and chemokines such as CCL19 and CCL21 [96, 137], 

suggesting a role in regulating T cell development.  Thymic 

FRCs also produce podoplanin (also called gp38), a mucin-like 
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membrane protein that forms an immobilized CCL21 gradient, 

which is likely important for the targeting of newly differentiated 

Treg cells to the medulla [154].

A recent study reported that fibroblast-specific protein 

1 (FSP1, also known as S100a4) is a good marker of thymic 

fibroblasts [171].  Deletion of FSP1-expressing cells in FSP1-

thymidine kinase transgenic mice resulted in a prominent 

reduction in mature mTECs, thymus atrophy and a marked 

delay of thymus regeneration after chemical-induced injury.  

These results suggest that FSP1-expressing thymic fibroblasts 

are critical for the maintenance and regeneration of mTECs.  

However, FSP1-driven cell depletion might be inappropriate 

for studying the specific roles of medullary FRCs, because FSP1 

expression is detectable not only in medullary FRCs, but also in 

thymic capsular fibroblasts and mTECs.  A characterization of 

these cell subsets based on intrathymic location and functional 

molecules will be required to better understand the significance 

of thymic fibroblasts.  Whether and how thymic fibroblasts 

contribute to the medulla formation and T cell development are 

thus still open questions.

 

Conclusion

This report has reviewed the historical and more recent 

studies on thymic stromal cell subsets, including both the well-

characterized TECs and as yet less well characterized non-TEC 

stromal cells, and also the most recently highlighted thymic 

antigen-presenting cells such as DCs and B cells.  Accumulating 

evidence continues to reveal the cellular and molecular basis of 

thymic stromal cells, leading to advances in our understanding 

of how the thymic microenvironment supports T cell immunity.  

Based on such advances, several recent studies reported the in 

vivo reconstitution of the thymic microenvironment for producing 

functional and self-tolerant T cells [31, 172-174].  Such current 

and still emerging findings on the development, function, 

and reconstitution of thymic microenvironment will provide 

invaluable information toward insight for future therapeutic 

applications.   
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